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Abstract 7

The principle of holography, which states that a gravitational theory is closely related to 8

a non-gravitational theory of lower dimension, has revolutionized the search for a theory of 9

quantum gravity. One such example of this is the D0-Brane matrix model, which exhibits 10

signatures of M-theory in specific conditions and is the holographic dual of a 10 dimensional 11

black hole of type IIA string theory. Understanding the properties of this model is difficult 12

to do analytically. In this report, we use the bootstrap method, a numerical technique that 13

utilizes a positivity constraint to narrow down the range of allowed values. We consider 14

many simple systems to provide a comprehensive review of the bootstrap method. We 15

also bootstrap the D0-Brane matrix model and reproduce bounds on observables of that 16

setting. 17
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1. Introduction 44

Newton’s formulation of physics reigned supreme for multiple centuries. When it seemed like 45

our understanding of physics was complete, the works of Planck and Einstein turned this 46

dusk into the dawn of a new era. The discovery of quantum mechanics and general relativity 47

breathed new life into the field. These two subjects revolutionized our understanding of the 48

world at minuscule and gargantuan scales, typically unreachable without technology. Quantum 49

mechanics gave birth to the idea of discreteness of energy levels, which allowed for a much better 50

understanding of particles. General relativity redefined gravity as the curvature of spacetime, 51

which successfully accounted for existing problems like the precession of Mercury’s perihelion, 52

while predicting extreme objects such as black holes. 53

The beauty of both of these theories is their connection to the classical world. Simply taking 54

the appropriate limits in both recovers Newton’s formalism of classical mechanics. This makes 55

sense, since each theory is a more general version of Newton’s mechanics. It is then natural 56

to try and combine all of these together into a unified theory. Quantum field theory weaves 57

together special relativity and quantum mechanics, but the coalescence of general relativity 58

with quantum mechanics poses a problem. One such example of their incompatibility can be 59

seen in Hawking’s paradox regarding black holes. 60

Quantum gravity is the field that aims to resolve this issue and combine both fields1. There 61

has been considerable work done regarding this, giving birth to a myriad of theories that claim 62

to do so. The most prevalent of these is string theory, in which the fundamental particles are 63

vibrations on 1 dimensional objects known as strings [1]. 64

In this ongoing search, Gerard ’t Hooft and Leonard Susskind proposed an idea known as 65

holography, which suggested that the degrees of freedom of our universe can be found on its 66

boundary. In 1997, Juan Maldecena physically formulated this idea into the AdS/CFT corre- 67

spondence, which related the gravitational Anti de Sitter (AdS) space with a lower dimensional 68

non-gravitational conformal field theory (CFT) [2]. While we will not go into too much detail 69

here (see [3, 4, 5] for comprehensive reviews), the important thing is that studying one of these 70

theories provides insight on the other. 71

In this report, we discuss the D0-Brane matrix model (an alternate limit to the well-known 72

BFSS model [6], relating it to M-theory), which is equivalent to a 10 dimensional charged black 73

hole in type IIA string theory under the ’t Hooft limit, by the gauge/gravity duality mentioned 74

above. This model contains 9 bosons and 16 Majorana fermions, which are represented as N×N 75

matrices with N being large. Our goal is to learn information about the quasinormal modes 76

of the black hole through the matrix model theory. These modes have been found through 77

the super-gravitational side already [7]. In addition, we would like to verify if this model 78

has zero bound energy states, a conjecture that has been analytically proven for N = 2 but 79

not for other Ns due to complexity. This is not surprising. When looking at the much simpler 80

1Technically, there are four forces that are involved, but three of these fall under the realm of quantum
mechanics.
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quantum mechanics, the evolution of every wave function ψ is dictated by the time-independent 81

Schrödinger’s equation: 82

Hψ =

(
p2

2m
+ V (x)

)
ψ =

(
− 1

2m

∂2

∂x2
+ V (x)

)
ψ = Eψ, (1)

where we assume natural units (c = ℏ = 1) for the rest of this report. The energy E, which 83

are the eigenvalues of H, can only be found analytically for a handful of potentials [8]. Thus, 84

numerical methods are virtually necessary to find the energy values of quantum mechanical 85

systems - and hence the D0-Brane matrix model. 86

One such method is the bootstrap method. Most numerical methods, such as the Monte 87

Carlo method, determine values by checking which values of sought-after parameters satisfy 88

the given equations. On the other hand, the bootstrap method identifies regions of values 89

that the parameters cannot take. These are done through derived relations and a positivity 90

constraint; as the complexity/number2 of constraints get larger, the ‘incorrect’ regions grow, 91

leaving the allowed values. This technique, which was initially formulated to study the S-matrix 92

[9, 10], has been found to be accurate in various settings, which we shall cover in this report. 93

We specifically choose to work with this method because the Monte Carlo method has been 94

shown to be quite complex in the D0-Brane matrix model. On the other hand, Henry Lin has 95

found results similar to the Monte Carlo method using simple bootstrap constraints [11]. Thus, 96

this technique may provide new insight on the model with more constraints. 97

In this report, we begin using the bootstrap method on single particle systems, such as 98

the harmonic oscillator and the Pöschl-Teller potential. This also includes PT -symmetric 99

systems, which have non-Hermitian Hamiltonians. We work with Hamiltonians found in other 100

articles, and are able to successfully reproduce their results. We then turn our attention towards 101

quasinormal modes of black holes. We study three settings: the AdS3 metric, Schwarzschild 102

black hole, and the BTZ black hole. For the two 3 dimensional cases, we analytically find the 103

quasinormal modes, while we apply a semi-analytical technique for the other. In addition, we 104

attempt to apply the bootstrap method on the BTZ black hole, which fails due to the behavior 105

of the ‘potential’ of its radial equation. We also discuss potential remedies for this issue. Next, 106

we turn to bootstrapping matrix models. We start with the anharmonic oscillator, an example 107

of one matrix quantum mechanics. We finally work with the D0-Brane matrix model and 108

reproduce the results in Lin’s paper. 109

This report is arranged as follows. Section 2 contains examples of single particle systems 110

being bootstrapped. In Section 2.3, various PT -symmetric systems are considered. The deriva- 111

tions for the quasinormal modes of black holes can be found in Section 3. Sections 3.4 and 3.5 112

deal with bootstrapping the BTZ black hole and discussing issues in our approach. We cover 113

matrix models in Section 4, and an extensive look at the D0-Brane matrix model can be found 114

in Section 4.2. We wrap up the report and conclude our thoughts in Section 5. 115

2. Single Particle Quantum Systems 116

Before we discuss large N matrix models, we turn to single particle quantum mechanics, where 117

x and p are scalars. The constraints for this model can be found at the energy eigenstates |E⟩. 118

From basic quantum mechanics, we find that 119

⟨[H,O]⟩ = 0, (2a)
⟨HO⟩ = E⟨O⟩, (2b)

2The appropriate term depends on whether we are observing single particle systems or matrix models. This
notion will become clear.
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where H is the Hamiltonian of the system and O is any operator. Furthermore, the positivity 120

of the norm gives us the positivity constraint: 121

⟨O†O⟩ ≥ 0. (3)

With the relations in eqns. (2a) and (2b), our goal is to derive a recursion relation for the 122

expectation value of an operator. Such an expression will be able to generate a sequence of 123

moments {⟨f(x)n⟩}Kn=0 for some integer K, where f(x) depends on the form of the potential 124

V (x). Using these, we can define the Hankel matrix as Mij = ⟨f(x)i+j⟩. Then, we see that for 125

O =
∑K

n=0 anf
n, the positivity constraint states 126

0 ≤ ⟨O†O⟩ =
K∑

i,j=0

a∗i ⟨f(x)i+j⟩aj =
K∑

i,j=0

a∗iMijaj = a⃗ ·Ma⃗, (4)

where a⃗ ∈ Cn. Thus, the positivity constraint states that this matrix must be positive semi- 127

definite. This condition will determine the regions that E (among other parameters) cannot be 128

in. As K → ∞, this area will expand, and the remaining regions will correspond to the allowed 129

energy eigenvalues. 130

To see this in motion, we bootstrap quantum systems with analytical solutions so that we 131

can compare the analytical energy eigenvalues to ones found through the bootstrap method. 132

Such a process will be informative in how to find the operator in the moments sequence and 133

the dimension of the region to be bootstrapped. 134

2.1 Harmonic Oscillator 135

We begin with the harmonic oscillator potential due to its simplicity, and we were motivated 136

to bootstrap this example to match the work in [12]. We independently rederived these results 137

to test the Bootstrap method and compare our work with existing literature. 138

Here, the potential is V (x) = 1
2
x2. Thus, it is reasonable to expect the moment sequence to 139

be of the form {⟨xn⟩}∞n=0. With this in mind, we can use O = xnp with eqn. (2a) to find 140

n⟨xn−1p2⟩+ 1

4
n(n− 1)(n− 2)⟨xn−3⟩ − ⟨xn+1⟩ = 0. (5)

To substitute out ⟨xn−1p2⟩, we can use eqn. (2b) with O = xn−1 to get 141

⟨xn−1p2⟩ = 2E⟨xn−1⟩ − ⟨xn+1⟩. (6)

When combining these equations, we arrive at the recursion relation we are looking for: 142

⟨xn⟩ = 1

n

(
2E(n− 1)⟨xn−2⟩+ 1

4
(n− 1)(n− 2)(n− 3)⟨xn−4⟩

)
, (7)

where we rescaled n by n→ n− 1. 143

To initialize this relation, we set ⟨x0⟩ = 1. In addition, we know that the expectation values 144

of odd powers of x are 0, since the potential is even3. Nothing else can be said about the other 145

moments. Thus, we plug in increasing values of n to determine if there are any moments that 146

cannot be written as a function of other moments and E. We see that when n = 2, ⟨x2⟩ is 147

purely a function of E. Thus, our search space S, the set of initial conditions, is just {E}. 148

3This fact is also discernible from the recursion relation. When n = 1, eqn. 7 reads ⟨x⟩ = 0. For all odd
natural numbers beyond n = 1, the equation similarly reads 0, since ⟨xn⟩ depends on ⟨x⟩, ⟨3⟩, · · · , ⟨xn−2⟩.
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We can now construct our Hankel matrix. We automated this process on Mathematica. 149

Such a matrix for K = 5 is the following: 150

M =


1 0 E 0 3E2

2
+ 3

8

0 E 0 3E2

2
+ 3

8
0

E 0 3E2

2
+ 3

8
0 5E3

2
+ 25E

8

0 3E2

2
+ 3

8
0 5E3

2
+ 25E

8
0

3E2

2
+ 3

8
0 5E3

2
+ 25E

8
0 35E4

8
+ 245E2

16
+ 315

128

 . (8)

Since our search space is one-dimensional, we can easily work with higher values of K. 151

Thus, we consider K = 11, 21 for this example. With their Hankel matrices constructed, we 152

can simply find values of E for which all the eigenvalues are non-negative. The plots of E 153

depicting the ‘allowed’ energy eigenvalues can be found in Figure 1. It is easy to see that 154

K = 21 does a better job at finding these values, which we know analytically are En = n
2

for 155

odd, natural numbers n. As higher values of K are used, the bootstrap method will yield better 156

results. 157

Figure 1: A plot of the allowed energy eigenvalues of the harmonic oscillator for K = 11
(orange, upper) and K = 21 (purple, lower). Note that K = 11 only produces the E = 1/2
value, with the rest being hazy. K = 21 also has this haze for E > 5, but it successfully finds
E = 1/2, 3/2, 5/2, and 7/2.

We can now turn to a more complicated example. 158

2.2 Pöschl-Teller Potential 159

The Pöschl-Teller potential is V (x) = −λ(λ+1)
2

sech2(x), where λ ∈ Z+. This potential is a great 160

example, since it serves as a complex example to bootstrap. Furthermore, experience with this 161

system will prove useful in studying gravity, as we shall see in Section 3.4. 162

Here, it is natural to derive a recursion relation for the sequence {⟨sechn(x)⟩}∞n=0. We can 163

begin with O = sechn(x) tanh (x)p in eqn. (2a), which yields 164

− 1

2

[
n2⟨sechn(x)tanh(x)p⟩ − (n+ 1)(n+ 2)⟨sechn+2(x)tanh(x)p⟩

]
− i

[
(n+ 1)⟨sechn+2(x)p2⟩ − n⟨sechn(x)p2⟩

]
+ 2iV0(⟨sechn+4(x)⟩ − ⟨sechn+2(x)⟩) = 0.

(9)

Note the ⟨· · · p⟩ term that appears here, but not in the harmonic oscillator case. To get rid of 165

this term, along with the ⟨· · · p2⟩ term, we can use O = sechn(x) in both eqns. (2a and (2b)) 166

to find 167

⟨sechn(x)tanh(x)p⟩ = i

2

[
(n+ 1)⟨sechn+2(x)⟩ − n⟨sechn(x)⟩

]
,

⟨sechn(x)p2⟩ = 2E⟨sechn(x)⟩ − 2V0⟨sechn+2(x)⟩.
(10)
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Figure 2: Plots of the bootstrapped regions of the Pöschl-Teller potential with K = 7 and
λ = 3. Here, we can observe peaks at E = −1/2,−2, and −9/2, which match the analytical
energy values. Note that a zoom-in to find the −9/2 energy state was needed.

Combining both of these relations gives us the recursion relation: 168

− 1

4
(n+ 2)(−2λ+ n+ 1)(2λ+ n+ 3)⟨sechn+4(x)⟩ =(

2En+
n3

4

)
⟨sechn(x)⟩ − 1

2
(n+ 1)

(
−2λ2 − 2λ+ n2 + 2n+ 4e+ 2

)
⟨sechn+2(x)⟩.

(11)

Like the previous example, the potential is even, so all odd powered moments must be 0. The 169

search space is thus {E, ⟨sech2(x)⟩}, since we do not want ⟨sech−2(x)⟩ in our recursion relation. 170

Thus, our search space is two-dimensional, making this problem more computationally complex. 171

We can counter this issue with a simple trick: since ⟨sech2n+1(x)⟩ = 0 for n ∈ N, we can 172

make our sequence ⟨(sech2(x))n⟩∞n=0. That is, we can set n = 2s−4 such that eqn. (11) becomes 173

rs = −(4Es− 8e+ 2s3 − 12s2 + 24s− 16) rs−2 + (−4Es+ 6E − 4s3 + 18s2 − 4s− 21) rs−1

2s3 − 6s2 − 37s
2

+ 45
2

,

(12)
where rs = ⟨(sech2(x))s⟩. Making this substitution reduces the size of the Hankel matrix in 174

this situation, hence reducing the complexity. The result of using bootstrap on this recursion 175

relation for λ = 3 and K = 7 can be found in Figure 2. In general, the eigenvalues of this 176

system are {−n2

2
}λn=1. It can be seen in Figure 2 that the bootstrap method is successful 177

in retrieving the energy values −1/2,−2, and −9/2. It is worth noting that the E = −9/2 178

value had to be found through zooming in quite closely and adding PlotPoints → 100 when 179

plotting. This extra effort needed can possibly be attributed to bootstrap converging to this 180

energy eigenvalue too fast. Such energy levels may prove difficult to find for models that have 181

an unknown eigenvalues. 182

After observing the success of the bootstrap method for these examples, we can test this 183

method on the more non-traditional theory of PT symmetric systems. 184

2.3 PT Symmetric Systems 185

Before we understand the bootstrap constraints of PT symmetric Hamiltonians, let us provide a 186

brief introduction to the topic. It is well known that the Hamiltonian H of quantum mechanics 187
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dictates the energy states and the time evolution of states. Mathematically, these conditions 188

state that the eigenvalues of H are real and e−iHt is unitary, which are necessary conditions to 189

ensure the theory is physical. If H is Hermitian, then it is easy to see that these requirements 190

are satisfied. However, Hermiticity is not the only property of the Hamiltonian that satisfies 191

these requirements. 192

One of the causes of such an idea was a conjecture made by D. Bessis [13], which stated that 193

the eigenvalues of H = p2+x2+ix3, which is not Hermitian, were real and positive. This claim, 194

which was formed on the basis off of numerical means, could be attributed to the PT symmetry, 195

or both parity (spatial reflections) and time reversal, of the Hamiltonian. More specifically, 196

when making the transformations (i) i → −i and (ii) x → −x, this Hamiltonian remains 197

invariant4. Such Hamiltonians have been shown to produce real eigenvalues and unitary time 198

operators [13, 14]. There is still work being done on extracting observables of PT -symmetric 199

Hamiltonians, but they have been found to describe interacting systems [15, 16]. 200

Our motivation to study the effect of the bootstrap method on PT -symmetric systems is to 201

simply illustrate the range of the technique. The general process remains the same. However, a 202

slight modification of constraints in eqns. (2a), (2b), and (3) is required to execute this method 203

in this setting. We will illustrate the changes needed for the constraints, but not explicitly 204

derive the recursion relations like before, since that process is identical to the Hermitian case. 205

Like before, we have that H|En⟩ = En|En⟩. However, we now see that ⟨En|H† = ⟨En|E∗
n ̸= 206

⟨En|En. Such a property becomes problematic when deriving the aforementioned constraints. 207

Thus, we introduce a new operator V = eQ [17] that is Hermitian, positive, ⟨V⟩ = 1, and 208

satisfies5 H† = VHV−1. Thus, it is easy to see that we have the following constraints: 209

⟨[H,O]⟩V = ⟨V [H,O]⟩ = 0, (13a)
⟨HO⟩V = ⟨VHO⟩ = E⟨O⟩V , (13b)

⟨V−1O†VO⟩V = ⟨O†VO⟩ ≥ 0, (13c)

where ⟨X⟩V = ⟨VX⟩. Note that if V−1O†V ∼ O†, then all of the constraints are identical to 210

ones from Hermitian quantum mechanics. Such an equivalence can be found given the nature 211

of x and p, as we shall see for a couple of examples. 212

2.3.1 Shifted Harmonic Oscillator 213

The Hamiltonian here is 214

H = p2 + x2 + 2iϵx. (14)

It is easy to see that the last term is what makes the Hamiltonian PT -symmetric and not 215

Hermitian. Thus, to determine Q - and hence V - such that H† = VHV−1, we need Q to be 216

a function of momentum along; otherwise, the position operators would commute, indicating a 217

false Hermiticity of the Hamiltonian. Since the term of concern is linear in position, it is worth 218

considering Q = αp. 219

Applying the commutation relation [pn, x] = −inpn−1, we find the following constraint on 220

α: 221

−2ixα− α2 + x2 + 2ix+ 2ϵα = x2 − 2iϵx. (15)
4Note that this Hamiltonian is not P and T symmetric individually. That is, parity P has the effect of (i)

x → −x and (ii) p → −p, while time reversal T makes (i) p → −p and (ii) i → −i.
5This property allows one to tie a PT -symmetric Hamiltonian to a Hermitian Hamiltonian, since H =

e−Q/2HeQ/2 is Hermitian (however, this changes the boundary conditions, meaning the solutions may be af-
fected). Thus, the V operator is important in understanding the role of observables in PT -symmetric models
[14].
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Grouping the terms with and without x and solving for α yields α = 2iϵ6, meaning Q = 2iϵp 222

and V = e2iϵp. Note that setting ϵ = 0 makes V = 1, which makes sense as Hermiticity is 223

restored. Moreover, it is easy to check that V in general satisfies all of its above properties. 224

This means that V−1pV = p, which cannot be said about x. Thus, the positivity constraint 225

here, given O =
∑K

n=0 anp
n, reads 226

0 ≤ ⟨V−1OVO⟩V =
K∑

i,j=0

a∗i ⟨pi+j⟩Vaj. (16)

Like before, we can define Mij = ⟨pi+j⟩V and carry on the bootstrap method. It is important 227

to note that ⟨· · ·⟩V is the analog of ⟨· · ·⟩ in the PT -symmetric setting. The derivation of the 228

recursion relation is identical to the Hermitian setting because all of the constraints use this 229

specific type of expectation value. However, there may be a change in the domains of search 230

space parameters; that is, ⟨x⟩ and ⟨Vx⟩ may make the Hankel matrix positive semi-definite at 231

different values. No such difference was found for the PT -symmetric Pöschl-Teller potential, 232

which had an identical recursion relation to the one derived in Section 2.2 [19]. 233

When using the bootstrap method with the recursion relation found in [19], we produce 234

plots that match the results of that paper. These can be found in Figure 3. 235

(a) Plot of the allowed energy eigenvalues found through bootstrap for ϵ = 0.5 and K = 15. The
expected values are 1.12 and 3.25, which matches the values found.

(b) Plot of the allowed energy eigenvalues found through bootstrap for ϵ = 1 and K = 15. The
expected values are 2 and 4, which matches the values found.

Figure 3

2.3.2 Swanson Hamiltonian 236

Here, the Hamiltonian is H = p2 + x2 + ic{x, p}, where {·} are the anticommutator brackets. 237

Since the PT -symmetric term is ∼ xp, it is a good guess to assume Q = αx2. Using the 238

same process as before, it is easy to find that α = −c. Since V is purely a function of x, 239

meaning V−1xV , so it is best to choose ⟨xn⟩V as our moment sequence. This is straightforward 240

to find [18]. Figure 4 contains the energy levels found through bootstrap for this setting. It is 241

worth noting that a deeper search was needed to accurately find intervals for each of the energy 242

eigenvalues; that is, a step size of 10−2 proved insufficient, so we resorted to 10−3. 243

For both the shifted harmonic oscillator and Swanson Hamiltonians, it is easy to see that 244

the Hamiltonians become the harmonic oscillator when ϵ or c are set to 0. This can also be seen 245

in the recursion relations in [19], as taking these limits produces the recursion relation in eqn. 246

(7). This point illustrates that the derivation of the recursion relation is robust to additional 247

terms. 248

6The equations with and without x produce the same value of α, which is a quirk that is interesting. This
also happens for more complex systems, as commented in [18].
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(a) Plot of the allowed energy eigenvalues of the Swanson Hamiltonian found through bootstrap for
c = 0.5 and K = 15. The expected values are 1.12 and 3.35, which matches the values found.

(b) Plot of the allowed energy eigenvalues found through bootstrap for c = 1 and K = 12. The
expected values are 1.41 and 4.24, which matches the values found.

Figure 4

2.3.3 V (x) = −x4 249

A more complex example is the Hamiltonian H = p2 − x4. The potential is clearly unbounded 250

below. However, this Hamiltonian can be transformed into a solvable, PT -symmetric Hamil- 251

tonian if x is on a contour in the complex world [13, 20, 19]: 252

H =
1

2
{(1 + ix, p2)} − 1

2
p− 16(1 + ix)2, (17)

where {·, ·} are the anti-commutator brackets. Finding Q here is trickier, but since most of the 253

PT -symmetric terms are of x, it is wise to assume Q is a function of p. Namely, this operator 254

is p3/48 − 2p [20]. Like the shifted harmonic oscillator example, the sequence of moments is 255

⟨pn⟩V . Bootstrapping the recursion relation, which produces a three-dimensional search space, 256

produces the plots in Figure 5, which showcase the ground and first excited energy levels. 257

These roughly match the plots in [19], the difference in which could be attributed to different 258

programming languages used to bootstrap. 259

As mentioned earlier, this example contains a three-dimensional search space, making it the 260

most computationally intensive example provided thus far. Not only does this make a simple 261

search take longer, but for recursion relations with unbounded moments, determining the area 262

where the positivity constraint is satisfied becomes much more difficult. That is, there is no 263

information on ⟨p2⟩V and ⟨p⟩V , two elements of the search space. However, if the moment is 264

bounded, like certain trigonometric or hyperbolic functions, then the region to search for those 265

is bounded. For example, in Section 2.2, ⟨sech2(x)⟩ is bounded in the interval [0, 1], so the area 266

searched during bootstrap was designated to that region. 267

With the success of the bootstrap method in Hermitian and PT -symmetric quantum me- 268

chanics, we can turn our attention to gravity. After all, holography suggests there is a connection 269

between gravity and quantum mechanics. 270

3. Quasinormal Modes of Various Metrics 271

Let us briefly introduce quasinormal modes before deriving them for gravitational settings. 272

Quasinormal modes are oscillations of a system that are dampened. These can be thought of 273

as normal modes, along with an exponential term that dampens them based on some initial 274

condition. That is, if a normal mode is given as Re(eiωnt), where ωn is the normal mode 275

frequency, then the quasinormal mode is given by: 276

φ(t) = eωdtRe(eiωnt). (18)
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Figure 5: Plots of the ground state (left) and first excited (right) energy values of eqn. (17), as
functions of E, ⟨p⟩V , and ⟨p2⟩V . Here, K = 10 to reduce complexity, and the intervals chosen for
the search space parameters were based on the choices in [19]. This was done for the purpose
of comparison.

.

It is clear that ωd is a negative term that dictates the rate of decay of the normal mode that 277

comes after it. We can rearrange the above equation into a form that is analogous to the normal 278

mode wavefunction: 279

φ(t) = eωdtRe(eiωnt) = Re(ei(ωn−iωd)t) = Re(eiωt). (19)

Thus, the quasinormal mode frequency ω is a parameter that incorporates both the normal 280

mode frequency and the time decay parameter. Whether a system has normal or quasinormal 281

modes is based on the boundary conditions at play. However, these conditions do not have to 282

be based on time in general; a system’s normal modes do not decay with respect to time unless 283

some external force or object influences it. In fact, the one non-black hole example that we 284

consider has normal modes, while the black hole metrics produce quasinormal modes. As we 285

shall see below, the radial boundary conditions are what allows us to solve for the (quasi)normal 286

mode frequencies. 287

When applied to black holes and gravitational metrics, (quasi)normal modes refer to how 288

perturbations of the field in those metrics behave. We determine the (quasi)normal modes of 289

three well-known metrics with a massless scalar field7. We do this analytically, but if such a 290

process is not possible, then we will resort to semi-analytical means. This process can roughly 291

be summed up as solving for the wave equation of GR from the Klein-Gordon operator: 292

1√
| det gµν |

∂µ(
√
| det gµν |gµν∂νϕ) = 0. (20)

We then use boundary conditions to determine how the time parameter behaves, which yield the 293

modes. Thus, determining (quasi)normal mode frequencies of gravitational settings is simply a 294

spectral/eigenvalue problem with initial values. As stated prior, the D0-Brane Matrix Model 295

describes a black hole in the ’t Hooft limit. Studying the certain correlation functions of the 296

7Using different fields, such as a massive scalar field or a electromagnetic field, yield different modes. However,
the flavor of the problem is the same regardless, so we stick to working with the simplest case.
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this model provides insight on quasinormal modes frequencies of this black hole. As such, a 297

thorough review of quasinormal modes in simpler settings is key. 298

3.1 AdS3 Metric 299

We begin with the AdS3 spacetime. This is an example of a simple, gravitational spacetime 300

that will produce normal and not quasinormal modes because there is no black hole present. 301

Its metric is given by: 302

ds2 = −
(
r2 + l2

l2

)
dt2 +

(
l2

r2 + l2

)
dr2 +

(
r2
)
dϕ2, (21)

where l is the radius of AdS3. This metric is diagonal in the {t, r, ϕ} coordinates, so our wave 303

equation simplifies to 304
1

r
∂µ (rg

µµ∂µφ) = 0. (22)

Making the summation explicit, we arrive at at the partial differential equation we must solve: 305

−
(

l2

r2 + l2

)
∂2t φ+

1

rl2
∂r
(
(r3 + l2r)∂rφ

)
+

(
1

r2

)
∂2ϕφ = 0. (23)

We can proceed to solve this partial differential equation through separation of variables. 306

Through this, we find that T (t) = e−iωt, since the perturbation vanishes as t → ∞, and 307

Φ(ϕ) = eimϕ. It is important to note that ω are the mode frequencies that we are attempting 308

to find. These should be real because they are normal mode frequencies. The radial equation 309

turns out to be: 310

(r2 + l2)2

l4
R′′ +

(3r2 + l2) (r2 + l2)

rl4
R′ +

(
−m(r2 + l2)

r2l2
+ ω2

)
R = 0. (24)

This equation can be solved explicitly. Before we do so, we rewrite our radial equation in terms 311

of a new variable z = r2

r2+l2
. The motivation for this, originally inspired by the work in [21], 312

will become apparent soon. The differential equation now reads: 313

z(1− z)R′′(z) + (1− z)R′(z) +

(
−m

2

4z
+
l2ω2

4

)
R(z) = 0. (25)

Using DSolve in Mathematica, we can analytically solve this equation: 314

R(z) =c1z
−m/2

2F1

(
−m

2
− lω

2
,
lω

2
− m

2
; 1−m; z

)
+ c2z

m/2
2F1

(
m

2
− lω

2
,
m

2
+
lω

2
;m+ 1; z

)
,

(26)

where 2F1(a, b; c;x) =
∑∞

n=0
(a)n(b)n

(c)n
xn

n!
is the hypergeometric function. Here, (a)n = Γ(a+n)

Γ(n)
is 315

the Pochhammer symbol. Since no horizon exists here, as r = 0 is the only singularity in the 316

metric, we can use the fact that the wave must be smooth at r = 0 ↔ z → 0. Each of the 317

hypergeometric functions reduce to constants, so c1 has to be 0 for smoothness. Thus, the 318

radial solution is 319

R(z) = c1z
m/2

2F1

(
m

2
− lω

2
,
m

2
+
lω

2
;m+ 1; z

)
. (27)
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To retrieve the normal mode frequencies, we can use the other boundary condition: the wave 320

must disappear as r → ∞ ↔ z → 1. We can use a relation of hypergeometric functions, which 321

we originally found in [21], that reads: 322

F (a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b; c− a− b+ 1; 1− z),

(28)

where a = m
2
− lω

2
, b = m

2
+ lω

2
, and c = m+ 1. This is why we switched to the z coordinate; in 323

this limit, 1 − z → 0, the hypergeometric functions are constants yet again. The second term 324

vanishes in this limit. Thus, the only way for our radial solution to vanish in the far-field limit 325

is if Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

= 0. This is only possible when c− a = −n or c− b = −n for n ∈ N0, meaning 326

our normal mode frequencies are 327

ωn =

∣∣∣∣± (m+ 2(n+ 1)

l

) ∣∣∣∣ = m+ 2(n+ 1)

l
. (29)

Figure 6 shows R(r) for select values of m and n. The normal modes of perturbations in 328

AdS3 spacetime are the total wavefunction, which are the product of time, angular, and radial 329

functions: 330

φ(t, r, ϕ) = Re(e−iωnteimϕ)

(
r2

r2 + l2

)m/2

2F1

(
m

2
− lωn

2
,
m

2
+
lωn

2
;m+ 1;

r2

r2 + l2

)
(30)

up to some arbitrary constant in front. The mode frequencies are real, confirming these modes 331

as normal. In fact, the frequencies above can be mapped to the energy levels of the quantum 332

harmonic oscillator, since they are both evenly spaced. 333

Now, let us turn towards the BTZ black hole, which is a black hole in the AdS3 spacetime. 334

3.2 BTZ Black Hole 335

The metric of the BTZ black hole spacetime is: 336

ds2 = −
(
r2 − r2+
l2

)
dt2 +

(
l2

r2 − r2+

)
dr2 +

(
r2
)
dϕ2, (31)

with r+ > 0. The metric considered in the above section is identical to this one, given r+ = il. 337

Given the physical significance of this metric, we expect to find quasinormal modes here. Like 338

before, we need to solve eqn. (20), which is identical to eqn. (22) from the previous section. 339

Expanding this out leads to the following partial differential equation: 340

−
(

l2

r2 − r2+

)
∂2t φ+

1

rl2
∂r
(
(r3 − r2+r)∂rφ

)
+

(
1

r2

)
∂2ϕφ = 0. (32)

Using separation of variables, which yields the same solutions for t and ϕ as the AdS3 spacetime, 341

we find the radial equation: 342

(r2 − r2+)
2

l4
R′′ +

(
3r2 − r2+

)
(r2 − r2+)

rl4
R′ +

(
−
m(r2 − r2+)

r2l2
+ ω2

)
R = 0. (33)

In the AdS3 setting, we then rewrote the radial equation in terms of a new variable z. We do 343

this again with z = 1 − r2+
r2

such that z is bounded between 0 and 1 [21]. The radial equation 344

is now succinctly expressed as: 345

(1− z)zR′′(z) + (1− z)R′(z) +
R(z) (l4ω2 − l2m2z)

4r2+z
= 0. (34)
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Figure 6: Plot of R(r) from eqn. (27) for (m,n) = (0, 2), (3, 1), and (1, 10). A factor of
c1 = 1, 15, and 20 were respectively chosen for visibility.

This equation is exactly solvable, giving the solutions: 346

R(z) =c1z
− il2ω

2r+ 2F1

(
−iωl

2

2r+
− iml

2r+
,
ilm

2r+
− iωl2

2r+
; 1− iωl2

r+
; z

)
+ c2z

il2ω
2r+ 2F1

(
il2ω

2r+
− ilm

2r+
,
iωl2

2r+
+
iml

2r+
;
iωl2

r+
+ 1; z

)
.

(35)

We must invoke boundary conditions once again to determine which of these two linearly 347

independent solutions is correct. Since the horizon exists in this scenario, the wave at the 348

horizon must be in-going. That is, when written in the tortoise coordinate8 x, the wave must 349

be of the form φ(t, x, ϕ) = e−iω(t+x)emϕ. Note that r → r+ means z → 0. Furthermore, 350

dx/dr = l2/(r2 − r2+), so x = l2

2r+
log
(

r−r+
r+r+

)
. Then, we see that 351

e−iωx ∝ (r − r+)
−il2ω/2r+ , (36)

so the correct solution is the first one in eqn. (35). 352

The process for deriving the quasinormal modes is identical to the AdS3 setting. Using 353

the same far-field boundary condition, which states that the perturbation must vanish when 354

r → ∞ ↔ z → 1, and the hypergeometric function relation from eqn. (28), the radial solution 355

becomes: 356

R(z) −→ c1
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b; a+ b− c+ 1; 1− z), (37)

where a = − iωl2

2r+
− iml

2r+
, b = ilm

2r+
− iωl2

2r+
, and c = 1− iωl2

r+
. Like before, this forces c− a or c− b to 357

8Such a set of coordinates, named after the well-known Zeno’s paradox of Achilles and a tortoise, is com-
monplace when studying black hole spacetimes. In tortoise coordinates, radial null geodesics are surfaces in
which time is considered constant.
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Figure 7: Plot of Re[R(r)] from eqn. (27) for (m,n) = (0, 2), (3, 1), and (1, 10) with r+ = 1/2
and l = 1. A factor of c1 = 1/120, 1/6, and 5 × 10−5 were respectively chosen for visibility.
Note that these solutions only hold for r > r+ = 1/2. Furthermore, only the real portions of
these functions are shown due to their physical relevance.

be non-negative integers n. Therefore, the quasinormal modes frequencies are: 358

ωn =
m

l
− 2ir+

l2
(n+ 1), (38)

which matches the result in [22]. Figure 7 shows R(r) for select values of m and n with l = 1 359

and r+ = 1/2. Note that the quasinormal mode frequencies are consistent with eqn. (29) with 360

r+ = il. Finally, the quasinormal modes themselves are: 361

φ(x) = Re

e−iωnteimϕ

(
1−

r2+
r2

)− il2ωn
2r+

2F1

(
−iωnl

2

2r+
− iml

2r+
,
ilm

2r+
− iωnl

2

2r+
; 1− iωnl

2

r+
; 1−

r2+
r2

)
(39)

Note that the radial solution need not be real here; such a property only holds true for m = 0. 362

Throughout the derivation for both the AdS3 and BTZ black hole spacetimes, the only 363

constraints that were placed on the time parameters ω were the boundary conditions. Without 364

them, ω was free to be any value. Of course, the physical dynamics of the setting is contained 365

in the Klein-Gordon equation and the metric, but the boundary conditions were necessary to 366

determine if the wavefunctions exhibit normal or quasinormal modes. 367

These examples show that deriving (quasi)normal modes of simple spacetimes interacting 368

with the simplest field possible is not an easy process. As we shall see in the next section, 369

analytical expressions for these values cannot be found even when adding one more spatial 370

dimension. 371
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3.3 Schwarzschild Black Hole 372

Here, the metric is 373

ds2 = −
(
r − 2M

r

)
dt2 +

(
r

r − 2M

)
dr2 + r2dθ2 + r2sech2(x)dϕ2. (40)

Solving the wave equation is straightforward, since the metric is diagonal using the above 374

coordinates. By assuming φ = R(r)T (t)g(θ, ϕ) and using separation of variables, we find that 375

g is simply the spherical harmonics, which appear in other settings like the Hydrogen atom 376

example in quantum mechanics. The time function is once again T (t) = e−iωt, where ω are the 377

quasinormal modes. Dividing these solutions out, we are left with the radial equation: 378

(r − 2M)2R′′(r) = −
(
2(r −M)(r − 2M)

r

)
R′(r) +

(
l(l + 1)(r − 2M)

r
− ω2r2

)
R(r), (41)

where ω is the quasinormal mode frequencies and l(l+1) is the separation constant for the 379

angular terms. No solution exists for this equation, so there is no way to derive the quasinormal 380

modes themselves. However, we can check if our radial equation has the correct limits as r → ∞ 381

and r → 2M . This exercise will strengthen our understanding of the system. 382

3.3.1 Horizon Limit 383

In the latter limit, we can use the Frobenius method to determine if our solution has the 384

appropriate limit as r → 2M . First of all, it is easy to see that r = 2M is a regular singular 385

point of eqn. (41). Thus, the method is applicable here. Let R =
∑∞

k=0Ak(r− 2M)k+s. Then, 386

we see that 387

0 =
∞∑
k=0

[
(k + s)(k + s− 1) +

2(r −M)

r
(k + s) + ω2r2

]
Ak(r∗)

k+s − l(l + 1)

r

∞∑
k=1

Ak−1(r∗)
k+s,

(42)

where r∗ = r−2M was defined for convenience. The incident polynomial, which is the coefficient 388

of A0r
s, must be 0. Thus, 389

s =
r∗
2r

± 1

2

√
r2∗
r2

− 4r2ω2. (43)

To determine this sign, we need to employ the ingoing boundary condition at r∗ = 0. When 390

this value is plugged in, we find that s = ±2iMω. In addition, we see that under this limit: 391

R(r) ≈ A0(r∗)
±2iωM . (44)

The ingoing condition demands that f(t, x) = Ce−iω(t+x), where x = r + 2M ln (r∗) is the 392

tortoise coordinate for a Schwarzschild metric. We already know that e−iωt is the solution to 393

the ODE of time in eqn. (41), since the perturbation must be virtually nonexistent at a much 394

later time. For r, note that e−iωx ∝ r−2iMω
∗ , meaning that s = −2iMω. 395

All that is left for this direction is to find a recursion relation for Ak. The coefficient of zk+s 396

must vanish, so we have: 397

Ak =
Ak−1

Mk2 − 4iM2ωk
=⇒ Ak =

c1 (M)1−k

(1)k−1(1− 4iMω)k−1

, (45)

where (x)k is the Pochhammer symbol. Thus, near the horizon, the radial solution is: 398

R(r) = A0(r − 2M)−2iMω + c1

∞∑
k=1

(M)1−k

(1)k−1(1− 4iMω)k−1

(r − 2M)k−2iMω (46)
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3.3.2 Far-field Limit 399

In the other limit, r → ∞, our ODE becomes: 400

R′′(r) +
2

r
R′(r) +

(
ω2 − l(l + 1)

r2

)
R(r) = 0. (47)

The solution to this equation is: 401

R(r) = c1jl(rω) + c2yl(rω), (48)

where j and y are the spherical Bessel functions of the first and second kinds respectively. Since 402

our perturbation must vanish when r is very large, we can study the case where ω ≪ 1, since 403

this reduces to the familiar Minkowski metric setting, and r ≫ 1. Expanding the first solution, 404

we get 405

jl(rω) = C(rω)−1/2Jl+1/2(rω) = C(rω)−1/2

(
∞∑

m=0

(rω
2

)2m+l+ 1
2

)
≈ C rl. (49)

To make sure the second solution is the correct one, we can expand it too: 406

yl(rω) = C(rω)−1/2J−l−1/2(rω) = C(rω)−1/2

(
∞∑

m=0

(rω
2

)2m−l− 1
2

)
≈ C r−(l+1). (50)

Thus, c1 = 0 in eqn. (48), meaning the radial equation in this regime is 407

R(r) = c1yl(ωr). (51)

With a thorough review of the radial solution at the extreme limits done, we can now discuss 408

how to find the quasinormal mode frequencies of this black hole. 409

3.3.3 Quasinormal Mode Frequencies of the Schwarzschild Black Hole 410

Since the radial equation cannot be solved, we will instead use perturbation theory instead of 411

pure numerics to gain some perspective on ω. This work is based on the method described in 412

[23]. 413

Such a method is useful for its versatility; it can be used in a wide variety of situations, such 414

as black holes with charge and spin [24, 25]. However, it possesses one major flaw: the series 415

that it produces - that approximates the ‘true’ value of the sought-after parameter - is not 416

always convergent. Thus, other methods such as the Borel summation or Padé approximants 417

(see [26] for more detail) may be necessary. 418

A Quick Look at Perturbation Theory 419

420

To begin, let us rewrite the radial equation of this setting from eqn. (41) as 421[
f(z)

d

dz
f(z)

d

dz
+ (2Mω)2 − f(z)

(
ℓ(ℓ+ 1)

z2
+

1

z3

)]
R(z) = 0, (52)

where z = r/2M and f(z) = 1− 1
z
. Now, we can define the perturbation term as 422

ℏ =

√
2

ℓ(ℓ+ 1)
. (53)
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Now, note that multiplying both sides by ℏ2 allows us to write the previous equation as 423(
−ℏ2f(z)

d

dz
f(z)

d

dz
+ V (z)2

)
R(z) = ER(z), (54)

where E = (2ωℏ)2 is the energy term and V (z) = V0(z) + ℏ2V1(z) = f(z) (z−2 + ℏ2z−3) is the 424

potential term. The ω term is the quasinormal mode frequencies that we are ultimately trying 425

to find. It is easy to see that, to get this equation into a Schrodinger form, we go to the tortoise 426

coordinate x defined by x = z + ln (z − 1) + C. We can strategically choose C such that V0 427

reaches its maximum value at x = 0. This corresponds to z = 3/2, so C = ln (2) − 3/2. The 428

advantage of doing so will be clear soon. We can now expand V0 near its maximum: 429

V0(z) =
8

27
− 32

729

(
z − 3

2

)2

+O(z3) ≈ 8

27
− 32

729
x2 +O(x3),

V1(z) = (1− s2)

(
8

81
− 16

729
x− 32

2187
x2 +O(x3)

)
,

(55)

where s is the spin weight of the background field. Now, we can do a couple of variable changes, 430

g =
√
ℏ and q = x/g, such that eqn. (54) becomes: 431

−1

2
ψ′′(q) +

v(x)

g2
ψ(q) = ϵψ(q), (56)

where the function v(x) is defined as follows: 432

v(x) =
V0(x)− V0(0)

2
+
g4(V1(x)− V1(0))

2
= v0(x) + g4v1(x). (57)

Furthermore, ϵ = (E − V (0))/2g2. The actual perturbative expansion for the energy term 433

is given by rewriting ϵ from the above equation into an infinite sum of a recursively defined 434

variable ϵn,l9 and the perturbation term g: 435

En = (2ωnℏ)2 = V (0) + 2ℏ
[ ∞∑

l=0

glϵn,l

]
= V (0) + 2ℏ

[
−
√
v′′0(0)

(
n+

1

2

)
+

∞∑
l=1

glϵn,l

]
. (58)

Note that
√
v′′0(0) is not real. The inclusion of this imaginary number is what leads the mode 436

frequencies to have a non-zero imaginary part. This is consistent with a field’s perturbation 437

exhibiting quasinormal mode frequencies in the presence of a black hole. 438

If we evaluate the terms ϵn,l, then we can find ωn in a straightforward manner. These terms 439

are defined as: 440

ϵn,0 = −
√
v′′0(0)

(
n+

1

2

)
,

ϵn≥1,l = −(n+ 1)(n+ 2)

2
An+2

n,l −
l−1∑
j=1

ϵn,jA
n
n,l−j +

l∑
j=1

(v0,jA
n−j−2
n,l−j + v1,jA

n−j
n,l−j−2).

(59)

The symbols Ak
n,l introduced in the above equation can be written as: 441

Ak
n,l =



(k+1)(k+2)Ak+2
n,l +

∑l−1
j=1 2ϵn,jA

k
n,l−j−2

∑l
j=1(v0,jA

k−j−2
n,l−j +v1,jA

k−j
n,l−j−2)

2
√

v′′0 (0)(k−n)
n+ 1 ≤ k ≤ n+ 3l

(k+1)(k+2)Ak+2
n,l +2

∑l
j=1(ϵn,jA

k
n,l−j−v0,jA

k−j−2
n,l−j −v1,jA

k−j
n,l−j−2)

2
√

v′′0 (0)(k−n)
0 ≤ k ≤ n− 1

δ0l k = n

0 otherwise

(60)

9The variables l and ℓ are different. We use this notation aware of this clash in order to match the notation
of [23], which this section is based on.
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Here, v0,j =
v
(j+2)
0 (0)

(j+2)!
10 and v1,j =

v
(j)
1 (0)

j!
. Since perturbation theory is not a main focus of this 442

report, we introduced and defined new terms without much of a derivation. A technical review 443

of this method can be found in [27, 28]. 444

An Illustrative Example 445

446

To showcase the perturbative method described above, let us find the quasinormal mode 447

frequencies for a set of n, l, and s values. To rederive the work in [23], we choose n = 0, ℓ = 2, 448

and s = 2. Firstly, eqns. (59) and (60) state that: 449

ϵ0,l = A2
0,l. (61)

Finding these symbols is enough to get a perturbative expansion for the quasinormal modes. 450

Since the first equation of eqn. (60), which is the most relevant for this choice of parameters, 451

is an implicit recursive relation, it is necessary to find A3l
0,l · · ·A3

0,l before A2
0,l. This can be done 452

in a straightforward manner, as Ak
n,l with k or l being negative vanish. 453

Rewriting eqn. (58) up to order ℏ3, we can finally find the quasinormal mode frequencies: 454

ωn

∣∣∣∣
n=0,l=2,s=2

=

√
3

4

[
8

27
− 4i

27
ℏ− 281

729
ℏ2 +

6163i

26244
√
2
h3 +O(ℏ4)

]
= 0.36628−0.0911245i. (62)

Since eqn. (58) contains powers of g =
√
ℏ rather than ℏ, one might expect fractional powers 455

of ℏ in the expression for ωn. However, the recursion relation for the Ak
n,l symbols dictate that 456

A2
0,l = 0 for odd l. In addition, the positive square root was chosen above to make sure Im(ωn) 457

is negative by definition. 458

The result above is consistent with the findings of [23]. The frequencies themselves are 459

correct up to order 10−2 with both the perturbative and numerical approximations performed 460

in the same paper. Their work also showcases how the difference between the types of approx- 461

imations is of order 10−5 when terms up to ℏ12 are considered in eqn. (62). In addition, the 462

approximation will get stronger for higher values of ℓ, since the perturbative parameter ℏ grows 463

smaller. 464

This exercise, along with the 2 + 1 dimensional examples, provide a brief glimpse into 465

the derivation of (quasi)normal modes, which are complex even in the simplest settings. The 466

methods presented above are not the only ways to find these modes, however. In fact, the 467

bootstrap method can be easily applied here, even though this is not a quantum system. As an 468

example, we return to the BTZ black hole. We shall bootstrap this setting and discuss some 469

problems we come across. 470

3.4 Bootstrapping the BTZ Black Hole 471

Recall that there is nothing intrinsically quantum mechanical about bootstrapping. Of course, 472

the equations that have been numerically investigated thus far have been the Schrodinger’s 473

equation, but any differential equation of the form in eqn. (1) is fair game. Thus, if we can 474

convert the radial equation from eqn. (33) to such a form, then the bootstrap method can be 475

implemented. 476

Fortunately, this process is simple. This can be done with a change of coordinates to the all- 477

too-familiar tortoise coordinates. To make the mathematics simpler, we define x = 1
2
log
(

r−r+
r+r+

)
, 478

10This formula is written incorrectly in [23] as v0,j =
v
(j)
0 (0)
j! . The correct form that we have written comes

from [27]

18



where we assume l = 1 and absorb the r+ in the denominator with the x for simplicity. We first 479

rescale our differential equation by R(r) → R(r)/
√
r ans then apply the coordinate change. 480

Finally, we substitute in eqn. (38) for ωn, so our equation becomes 481

−u
′′(x)

2
+

(
3

8
csch2(x) +

1

8
sech2(x)

)
u(x) = −2(n+ 1)2u(x). (63)

Note that we set m = 0 to first test the bootstrap method for the simplest setting. In addition, 482

a factor of 1/2 was introduced to match the form of the Schrodinger’s equation. Thus, our 483

potential is V (x) = 3
8
csch2(x) + 1

8
sech2(x). Such a potential is reminiscent of the Pöschl-Teller 484

potential; the inclusion of the hyperbolic cosecant term makes it a more general Pöschl-Teller 485

potential. 486

The next step is to determine the operator needed for the moment sequence. An immediate 487

thought might be a linear combination of csch(x) and sech(x). However, attempting to do so 488

fails as their coefficients are not identical. Another approach is using ex, since all hyperbolic 489

functions special forms of the exponential. Such a sequence is possible, but this becomes too 490

complicated due to the many exponential functions in the denominator; this makes the search 491

space large. In fact, the easiest moment operator to consider sech(x), the exact same one as 492

Section 2.2. The derivation of the recursion relation is slightly trickier, however. 493

The operators used in the bootstrap constraints have to be chosen carefully. Naively using 494

the same operators as Section 2.2 yields terms with csch(x), which cannot be rid. To coun- 495

teract these, we include factors of sinh(x). An easy conversion exists between even powers of 496

sinh(x) and sech(x) through the Pythagorean theorem, and the remaining sinh(x) terms gets 497

substituted out for another identity. 498

First, let us consider O = sechn(x)sinh3(x)p in the commutator constraint of bootstrap, 499

where the sinh3(x) was included to cancel out the hyperbolic cosecant term in V ′(x). Using a 500

more general potential of V (x) = acsch2(x) + bsech2(x), we find: 501

−1

2
α = iβ − iγ, (64)

where 502

α =(3− n)
(
⟨sechn−3(x)p2⟩ − ⟨sechn−1(x)p2⟩

)
+ n

(
⟨sechn−1(x)p2⟩ − ⟨sechn+1(x)p2⟩

)
, (65a)

β =(n− 3)2⟨sechn−2(x)sinh(x)p⟩ − (2n− 3)(n− 1)⟨sechn(x)sinh(x)p⟩ (65b)
+ n(n+ 1)⟨sechn+2(x)sinh(x)p⟩,

γ =− 2(a+ b)⟨sechn−1(x)⟩+ 4b⟨sechn+1(x)⟩ − 2b⟨sechn+3(x)⟩. (65c)

Thus, all we need to do is substitute out ⟨sechm(x)sinh(x)p⟩ and ⟨sechm(x)p2⟩. We have already 503

found a relation for the former term; the first equation in eqn. (10), which was one of the 504

relations found in the Pöschl-Teller potential, applies here as well. The latter term is also 505

straightforward to substitute out. Plugging in O = sechm(x)sinh2(x) into the constraint with 506

the energy term, we find 507

⟨sechm−2(x)p2⟩ − ⟨sechm(x)p2⟩ = 2
(
E⟨sechm−2(x)⟩ − (E + a+ b)⟨sechm(x)⟩+ b⟨sechm+2(x)⟩

)
.

(66)
There may be concern that the above linear combination of sechm−2(x)p2 is not present in eqn. 508

(64). However, this exact linear combination is found, so the above relation can be used without 509

caution. Thus, with a = 3/8 and b = 1/8, a recursion relation can be found for the BTZ black 510

hole: 511

rn = −c1rn−1 + c2rn−2 + c3rn−3

−2n3 + 6n2 − 6n+ 2
, (67)
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where rn = ⟨sechn(x)⟩ and 512

c1 =
(
4En− 6E + 6n3 − 30n2 + 54n− 34

)
,

c2 =
(
−8En+ 18E − 6n3 + 42n2 − 102n+ 86

)
,

c3 =
(
4En− 12E + 2n3 − 18n2 + 54n− 54

)
.

(68)

It is easy to see that we rescaled the exponents such that the our moment sequence is now 513

{rn}∞n=0, where rn = ⟨sech2n(x)⟩. In addition, note that the search space for this problem 514

contains three elements: E, ⟨sech2(x)⟩, ⟨sech4(x)⟩. Thus, our search space is three-dimensional, 515

just like the setting in Section 2.3.3. 516

3.5 Issues with the Wavefunction of the BTZ Black Hole 517

Figure 8: Plot of the allowed regions of E, ⟨sech2(x)⟩, and ⟨sech4(x)⟩ found through the positiv-
ity constraint. In this scenario, the positivity constraint included negative eigenvalues of order
−10−6 to mitigate numerical noise. This plot is reminiscent of the plane ⟨sech2(x)⟩ = ⟨sech4(x)⟩.

With the recursion relation having been derived, we can proceed with using the bootstrap 518

method, the result of which can be found in Figure 8. It is important to mention that this setting 519

produced a high amount of numerical noise that we did not come across in other situations. 520

That is, there were regions of the search space where the smallest eigenvalue was negative of 521

order 10−15. It is a reasonable assumption that these values are 0, so to account for these 522

points, we slightly modified the positivity constraint. Rather than all eigenvalues having to 523

be non-negative, we demand that they have to be greater than −10−6. The graph in Figure 8 524

follows this principle as well. 525
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This graph shows that the bootstrap method finds the E = −2 quasinormal mode. However, 526

there is no distinction between the E = −2 and E = −2.5 energy values. In fact, when zoomed 527

out, the general planar shape of allowed eigenvalues can be found for all values of E. More 528

specifically, this plane appears where ⟨sech2(x)⟩ = ⟨sech4(x)⟩. This plane seems to satisfy 529

the positivity constraint for various values of K, meaning that the bootstrap method is not 530

successful here in determining the quasinormal modes11. 531

To gain a better understanding of this counter-intuitive result, we turned to finding the 532

expectation values of sech2(x) and sech4(x) analytically. The radial equation, which is the 533

wave function here, has already been found in Section 3.2. It is straightforward to convert this 534

to the modified tortoise coordinates. However, we arrive at a new problem: ⟨sech2(x)⟩ and 535

⟨sech4(x)⟩ diverge. In fact, this wave function isn’t normalizable, since ⟨1⟩ also diverges. This 536

fact should not be too surprising, given the shape of the potential. It is easy to see that the 537

potential approaches 0 as x→ −∞, which explains the divergence. 538

However, it is still surprising that such a potential appears when converting the BTZ radial 539

equation to a Schrodinger-like equation, since the quasinormal modes were retrievable in the 540

gravity approach. This issue is more fundamental, and may be traced back to the metric. 541

Figure 9 contains a Penrose diagram of the black hole. The path we are taking here, as per 542

the metric from eqn. (31), is the red arrow in the diagram. This intersects with a point that 543

is present in both the black and white holes’ event horizon. Taking a different path in this 544

geometry may resolve this issue. One such metric is the following: 545

ds2 = 2dvdr −
(
r2 − r2+
l2

)
dv2 + r2dϕ2, (69)

which corresponds to the blue path of the Penrose diagram. Here, v = t + x. We are in the 546

process of determining if this method can resolve the issue of normalization. 547

While we have not fully solved this problem, the above work provides some insight on how 548

to view a gravitational problem as a quantum mechanical one. Deriving a recursion relation 549

with a complex potential shows the bootstrap in action for a richer setting. These examples 550

are illustrative of the versatility of the bootstrap method. In the next section, we move on to 551

applying this method to matrix models. 552

4. Matrix Quantum Mechanics 553

In matrix models, the Hamiltonian is a function of the trace of P and X, which are now 554

N ×N Hermitian matrices such that [Pij, Xkl] = −iδilδjk. Like before, we have the bootstrap 555

constraint from eqn. (2a), where ⟨O⟩ = Tr (ρO) and ρ is the density matrix corresponding 556

to an energy eigenstate or mixed thermal state. In addition, physical states in gauged matrix 557

models must satisfy ⟨Tr(GO)⟩ = 0, where 558

G = i[X,P ] +NI. (70)

These are the generators of SU(N). If the system was rotationally invariant with generators S, 559

then we would have ⟨[S,O]⟩ = 0. The examples below will not use this symmetry, but one case 560

can be found in [29]. In addition, we may use the cyclicity of the trace at large N to derive 561

relations between two operators, such as ⟨Tr(XP )⟩ and ⟨Tr(PX)⟩, for example12. Finally, we 562

11No region other than the plane in the search space satisfies the positivity constraint, so we only observed
this plane for various K

12The term ⟨Tr(XP )⟩ contains two traces by the definition of ⟨· · ·⟩ here. While this seems redundant, such
notation makes it clear that we are working with energy eigenstates/mixed thermal states. This is especially
important in settings where N is not large; operators other than simple trace operators need to be considered
there.
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Figure 9: Penrose diagram of the BTZ geometry. The path that leads to a wave function that
cannot be normalized, which is a product of the metric from eqn. (31), is depicted by the red,
horizontal arrow. This path extends to the point of the event horizon that is shared by both
the white and black holes. Avoiding this point may be the key to resolving this issue. One such
way to do so is the blue, slanted path.

have that ⟨O†⟩ = ⟨O⟩∗. To summarize, we have the following constraints for bootstrapping 563

matrix models: 564

⟨[H,O]⟩ = 0, (Commutator Constraint)
⟨Tr(GO)⟩ = 0, (Symmetry Constraint)

[A,B1B2 · · ·Bn] =
n∑

i=1

ciTr (B1 · · ·Bi−1)Tr (Bi+1 · · ·Bn) , (Cyclicity of Trace)

⟨O†⟩ = ⟨O⟩∗ (Conjugate Constraint)

The positivity constraint is also present here, but it is slightly different than the single 565

particle case. Our goal is to create a matrix like Table 1. It is easy to see that this matrix and 566

all of its submatrices satisfy the positivity constraint from eqn. (3); all of these submatrices, 567

whether they are connected or not, must have a non-negative determinant. The row and column 568

headers are not included as elements of the matrix, and they are only included to provide 569

structure for the matrix. The constraint grows stronger as we utilize more operators. As a 570

metric for the number of operators, we shall consider lengths of strings. That is, all operators 571

with some length up to L will be used in the row and column headers. For example, for L = 2 572

in single matrix quantum mechanics, we place the operators {I,X, P,X2, P 2, XP, PX} in the 573

headers, so our matrix would consist of 49 elements. In general, there are 2L+1 − 1 operators 574

with length less than or equal to L. Accounting for all of the submatrices, we get 22
L+1−1 − 1 575

determinant constraints. For L = 5, this number is of order 1018, meaning that bootstrapping 576

should be limited to low values of L. 577

The aim of applying bootstrap to matrix models is to construct such a matrix and simplify 578

its elements using the constraints mentioned prior. There will be parameters that cannot be 579

reduced, and we can find a lower bound of energy by minimizing ⟨H⟩ with respect to these 580

parameters. Before we enter the D0-Brane Matrix Model, let us take a look at a simple example. 581
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I O1 · · · On

I N ⟨Tr(O1)⟩ · · · ⟨Tr(On)⟩
O1 ⟨Tr(O†

1)⟩ ⟨Tr(O1O†
1)⟩ · · · ⟨Tr(OnO†

1)⟩
...

...
... . . . ...

On ⟨Tr(O†
n)⟩ ⟨Tr(O1O†

n)⟩ · · · ⟨Tr(OnO†
n)⟩

Table 1: A general table/matrix used in bootstrapping matrix models. It is easy to see that
this matrix is Hermitian, making it compatible with the positivity constraint. This constraint
states that all possible submatrices of this matrix must be positive semi-definite.

4.1 Anharmonic Oscillator 582

We begin with the anharmonic oscillator, which is an example that has already been boot- 583

strapped [29]. The Hamiltonian of this model is 584

H = Tr
(
P 2
)
+ Tr

(
X2
)
+

g

N
Tr
(
X4
)
. (72)

Let us first construct a matrix using strings with length 1 and under. Thus, the headers will 585

consist of I,X, P . Since the Hamiltonian is quadratic, we must have ⟨Tr(X)⟩ = ⟨Tr(P )⟩ = 0. 586

Therefore, the only unknown, non-vanishing elements of the matrix are ⟨Tr(X2)⟩, ⟨Tr(P 2)⟩, 587

⟨Tr(PX)⟩, and ⟨Tr(XP )⟩. The latter are easy to solve for. Using ⟨Tr(G)⟩ = 0, we find that 588

⟨Tr(XP )⟩ = −⟨Tr(PX)⟩ = iN2

2
(73)

In addition, [H, ⟨Tr(X2)⟩] gives us 589

⟨Tr(P 2)⟩ = ⟨Tr(X2)⟩+ 2g

N
⟨Tr(X4)⟩ (74)

The other two elements cannot be found given our constraints, so ⟨Tr(X2)⟩ and ⟨Tr(X4)⟩ are 590

the parameters used to minimize ⟨H⟩ = 0. The matrix for this calculation can be found in 591

Table 2. We used FindMinimum to do so, resulting in the lower bound found in Figure 10. It 592

is clear that this lower bound is not strict enough to understand the system. Thus, we move 593

onto the L = 2 case.

I X P
I N 0 0
X 0 ⟨Tr(X2)⟩ −iN2

2

P 0 iN
2

2
⟨Tr(X2)⟩+ 2g

N
⟨Tr(X4)⟩

Table 2: Bootstrap matrix using all strings with length ≤ 1.

594

As mentioned prior, our list of strings to use becomes {I,X, P,X2, P 2, XP, PX, }. Table 595

3 contains the L = 2 matrix. More information about the simplification of this matrix using 596

the bootstrap constraints can be found in Appendix A. From this matrix, we see that there are 597

four unknown parameters in this case, meaning that the minimization problem becomes much 598

more complex in this setting. The lower bound for E can be found in Figure 10. This is much 599

closer than the L = 1 lower bound to the exact energy ground state energy value, which can 600

be analytically found through mapping this problem to one of N free fermions [30]. It is worth 601

mentioning that this lower bound is not the exact one that was found in [29] for the L = 2 case, 602

which was done in Python. This is most likely due to the minimization algorithms themselves. 603

This example serves as a decent introduction to applying the bootstrap method to matrix 604

models. Using this knowledge, we can begin bootstrapping the D0-Brane Matrix Model. 605
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I X2 P 2 XP PX X P

I N a a+ 2g
N
b iN2

2
− iN2

2

X2 a b d 0 −iNa
P 2 a+ 2g

N
b d c iNa+ 2ig

N
b 0

PX − iN2

2
0 −iNa− 2ig

N
b d+ n3

2
d

XP iN2

2
iNa 0 d d+ n3

2

X a - iN2

2

P iN2

2
a+ 2g

N
b

Table 3: Bootstrap matrix using strings of length ≤ 2, where the empty elements are zeroes.
Here. a = ⟨Tr(X2)⟩, b = ⟨Tr(X4)⟩, c = ⟨Tr(P 4)⟩, and d = ⟨Tr(XPXP )⟩. Note that there are
49 elements, meaning that there are 27 − 1 = 127 submatrices and determinant constraints.

4.2 D0-Brane Matrix Model 606

It is important to note that the following discussion on and our understanding of the D0-Brane 607

Matrix Model comes from Lin’s paper [11]. As such, our work will follow Lin’s work, and we 608

shall rederive his results. 609

Before we can do so, we must understand the various components of the Hamiltonian, which 610

is 611

H =
1

2
Tr

(∑
I,J

(
g2P 2

I − 1

2g2
[XI , XJ ]

2 − ψαγ
I
αβ[XI , ψβ]

))
. (75)

Here, XI are the 9 bosonic matrices and ψα are the 16 fermionic matrices present in this theory 612

such that {ψij, ψkl} = [Xij, Xkl] = δilδjk. All of these matrices are traceless and Hermitian, 613

like in the anharmonic oscillator setting. Furthermore, γI are the gamma matrices of SO(9) 614

such that {γI , γJ} = 2δIJ . We are interested in studying this problem in the so called ’t Hooft 615

limit, in which this system transforms into a 10 dimensional black hole of string theory with 616

the metric: 617

ds2

α′ = −f(r)r2cdt2 +
dr2

f(r)r2c
+

(
r

rc

)−3/2

dΩ2
8, (76)

where 618

f(r) =

(
1− r2h

r2

)(
r

rc

)7/2

,

rc =
3
√

240π5g2N.

(77)

This limit is found when keeping the dimensionless quantity λ/T 3 = g2N/T 3 fixed as N → ∞. 619

More information about this and other limits of this model can be found here [31, 32]. 620

In this report, we will not be working with the gravitational side of this problem. Our goal 621

is to determine constraints on the energy and observables of the system, such as ⟨Xn⟩ for some 622

arbitrary n, from the matrix model perspective13. The general strategy to do so is to construct 623

lower bounds from the bosonic and the fermionic terms. Then, we can combine contributions 624

from both to create a stronger constraint. To do so efficiently, we rewrite the Hamiltonian in 625

the following manner: 626

H = K + B + F , (78)

where K,B, and F are the kinetic, bosonic, and fermionic terms of eqn. (75) respectively. 627

13There has been discussion about what these observables represent in the gravitational side [33].
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Figure 10: Plot of the lower bounds of the ground state energy along with the exact value
(orange, smooth) as a function of g. These lower bounds are from the positivity constraints of
the bootstrap matrices corresponding to L = 1 (blue, lower) and L = 2 (purple, higher).

4.2.1 Bosonic Contribution 628

To derive a constraint from the bosonic terms, we must eliminate the fermionic terms. This is 629

straightforward; using ⟨H, ⟨Tr(XP )⟩⟩ = 0, we find 630

−2⟨K⟩+ 4⟨B⟩+ ⟨F⟩ = 0. (79)

Combining this with ⟨H⟩ = E, we find that 631

−⟨K⟩+ ⟨B⟩+ 1

3
E = 0. (80)

Now, let us take a closer look at B. Let A,B be arbitrary bosonic matrices. Then, the Cauchy- 632

Schwarz inequality states that 633

⟨Tr(A2)⟩2⟨Tr(B)⟩2 ≥ ⟨Tr(AB)⟩2 ≥ 0. (81)

The term on the left is 0 by definition of the bosonic matrices, meaning ⟨Tr(AB)⟩ = 0. Thus, 634

we may write [A,B]2 in the following way: 635

[A,B]2 = ABAB +BABA− AB2A−BA2B = 2ABAB − 2A2B2, (82)

where the cyclicity of the trace is used. More specifically, we find that A2B2 − AB2A and 636

B2A2−BA2B are proportional to ⟨Tr(AB)⟩, which we showed was 0. In addition, we combined 637

terms using the conjugate constraint. We are then able to use the positivity constraint to 638

simplify the bosonic term. With the matrices seen in Tables 4 and 5, we find the following 639

constraints: 640

⟨Tr(A4)⟩⟨Tr(B4)⟩ ≥ ⟨Tr(A2B2)⟩2,
⟨Tr(A2B2)⟩2 ≥ ⟨Tr(ABAB)⟩2.

(83)
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The symmetry of the situation demands that ⟨Tr(A4)⟩ ≥ ⟨Tr(A2B2)⟩ ≥ ⟨Tr(ABAB)⟩. Then, 641

with eqn. (82), we find 642

4g2⟨B⟩ = −
9∑
I,J

⟨Tr([XI , XJ ]
2)⟩ ≤ 72(2⟨Tr(X4)⟩+ 2⟨Tr(X4)⟩) = 288⟨Tr(X4)⟩, (84)

where X is an arbitrary bosonic matrix. 643

A2 B2

A2 ⟨Tr(A4)⟩ ⟨Tr(A2B2)⟩
B2 ⟨Tr(A2B2)⟩ ⟨Tr(B4)⟩

Table 4: Bootstrap matrix used to deter-
mine ⟨Tr(A4)⟩ ≥ ⟨Tr(A2B2)⟩.

AB BA

AB ⟨Tr(A2B2)⟩ ⟨Tr(ABAB)⟩
BA ⟨Tr(ABAB)⟩ ⟨Tr(A2B2)⟩

Table 5: Bootstrap matrix used to deter-
mine ⟨Tr(A2B2)⟩ ≥ ⟨Tr(ABAB)⟩.

644

To utilize this fact, we turn to a constraint used in Section 4.1: for the L = 1 case, 645

it is straightforward to see that ⟨Tr(X2)⟩⟨Tr(P 2)⟩ ≥ ⟨Tr(XP )⟩⟨Tr(PX)⟩ = N4/4. In fact, 646

this relation holds true here, since ⟨Tr(XP )⟩ and ⟨Tr(PX)⟩ retain their value in this setting. 647

However, we have multiple X and P matrices here. Keeping the same X as used in the above 648

calculations, it is easy to see that 649∑
I

⟨Tr(X2)⟩⟨Tr(P 2
I )⟩ =

2

g2
⟨Tr(X2)⟩⟨K⟩ ≥ 9

4
N4. (85)

Thus, using eqns. (80), (84), and (85), we find the following constraint on E and ⟨Tr(X4)⟩: 650√
⟨tr(X̃4)⟩

(
144⟨tr(X̃4)⟩+ 2

3
ε

)
≥ 9

4
, (86)

where ε = λ−1/3N−2E, X̃ = λ−1/3X, and ⟨tr(· · · )⟩ = ⟨Tr(· · · )⟩/N . A couple of important 651

points to note here. Firstly, we used the constraint N⟨Tr(X4)⟩ ≥ ⟨Tr(X2)⟩2, which is trivial to 652

find from the positivity constraint. In addition, we have changed notation to match our work 653

with [11]. The reason this notation is used is to rid our constraint of the N dependence. This 654

allows for us to study the system at arbitrary N . 655

The relationship between the energy ε and ⟨tr(X̃4)⟩ can be found in Figure 11. The plot 656

shows that the bosonic terms provide a better lower bound for ⟨tr(X̃4)⟩ for lower energies. 657

More specifically, these correspond to ε ≪ 1 and ε ≫ 1 respectively. Such an analysis is 658

quite surprising from a simple bootstrap constraint such as this one, since ε ∼ 1 is when the 659

super-gravity solution begins to be invalid [11]. 660

To find a stronger bound for high energies, we must turn towards fermions. 661

4.2.2 Fermionic Contribution 662

Working with the fermionic terms is more challenging. To effectively apply the positivity 663

constraint on these terms, we rewrite F into
∑

I⟨Tr(OIXI)⟩. The explicit form of OI will not 664

be relevant for us, but we can find relations of OI . The derivations for these require a better 665

understanding of Majorana fermions and the generators of su(N), which is the Lie algebra of 666

SU(N). As such, we shall not provide these in this report, but they can be found in [11]. 667

Firstly, using ⟨[H,F ]⟩ = 0, we find that
∑

I⟨Tr(OIPI)⟩ = 0. In addition, it can be shown 668

that ⟨Tr(O2)⟩ ≤ 64N3, where O is an arbitrary element of {OI}. We can then construct a 669

matrix to bootstrap, which can be found in Table 6. The positivity constraint then yields: 670

⟨tr(X̃2)⟩ ≥
(
ε
9
− b

3

)2
144

+
3

8
(
ε
9
+ b

3

) , (87)
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Figure 11: Plot of the lower bounds of ⟨tr(X̃4)⟩ from the bosonic components (purple/dotted),
fermionic components (orange/dashed), and both (blue/solid). Note that the bosonic and
fermionic contributions are higher at low and high energies respectively.

O X P

O 1
9
⟨Tr(OIOI)⟩ 2

9

(
1
3
E − ⟨B⟩

)
0

X 2
9

(
1
3
E − ⟨B⟩

)
⟨Tr(X2)⟩ −iN2

2

P 0 iN
2

2
2
9

(
1
3
E + ⟨B⟩

)
Table 6: Bootstrap matrix using an arbitrary position, momentum, and fermionic matrix. Note
that the upper-left submatrix corresponds to the fermionic contribution, while the bottom-right
submatrix is purely bosonic.

where b is the value of ⟨B⟩ at the boundary itself. We can get rid of the b dependence in this 671

inequality by minimizing its right hand side with respect to b, since we are looking for a lower 672

bound. This purely fermionic constraint for ⟨tr(X̃2)⟩ can be found in Figure 12. 673

To get a bound on ⟨tr(X̃4)⟩ instead, like we did with the bosonic matrices, we can invoke 674

the simple identity ⟨tr(X̃4)⟩ ≥ ⟨tr(X̃2)⟩2. If we use the positivity constraint on solely the 2× 2 675

upper sub matrix of Table 11, we get a purely fermionic lower bound: 676

64⟨tr(X̃2)⟩ ≥ 4

9

(
ε

9
− 8

3
⟨tr(X̃2)⟩2

)2

. (88)

The lower bound of ⟨tr(X̃4)⟩ using the above equation can be found in Figure 11. 677

We can also incorporate bosonic terms into this constraint to find a stronger bound. From 678

eqn. (84), we see that we can set b = 72⟨tr(X̃4)⟩ at the boundary14. Setting the right hand 679

side of eqn. (87), which uses the positivity constraint on the entirety of Table 6, equal to b/72 680

14One may use the value for b from minimizing eqn. (87). However, this produces a weaker bound.
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yields a combined lower bound: 681(
ε

9
+
b

3

)[
12
√
2
√
b−

(
ε

9
− b

3

)2 ]
= 54. (89)

This lower bound matches the bosonic and fermionic constraints at low and high energies 682

respectively, as seen in Figure 11. The most noticeable difference is in the middle of these 683

values, where the combined lower bound is higher. 684

Figure 12: Plot of the lower bound of ⟨tr(X̃2)⟩ from the fermionic components. There is no
trivial bound from the bosonic terms.

The simple bootstrap matrices used thus far have produced bounds on these observables 685

that were found through much more complex Monte Carlo methods [34, 35, 36, 37]. Using 686

larger matrices, like in Section 4.1, will yield better bounds. In addition, a myriad of properties 687

have yet to be used, such as supersymmetry, the large N approximation, and SU(N) gauge 688

symmetry. A more depth discussion of the above method - both strengths and weaknesses - 689

can be found in [11]. 690

5. Summary and Conclusion 691

The above work showcases our work from the summer. As stated previously, a considerable 692

amount of time and effort went into understanding the method of bootstrap as a whole. This 693

included studying various single particle systems, such as the harmonic oscillator, Pöschl-Teller 694

potential, and PT symmetric systems. Our graphs matched those from existing literature, 695

which suggests that we have utilized the bootstrap method in the correct way. 696

Since this research is concerned with holography, the connection between a gravitational 697

and non-gravitational theory, we turned our attention towards studying quasinormal modes 698

of various black hole metrics. We found analytical forms of these modes for 2+1 dimensional 699

settings, such as the AdS3 spacetime and BTZ black hole, while we used a semi-analytical 700
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approach for the 3+1 Schwarzschild black hole, which does not have an analytical solution for 701

its wave function. 702

We then turned our attention to matrix models, since our end-goal is to understand the 703

D0-Brane Matrix Model. We started with the Anharmonic Oscillator Matrix Model, which 704

we were able to compare with the exact energy levels to gauge the accuracy of the bootstrap 705

method. Finally, we turned to the D0-Brane Matrix Model. Here, we used the bosonic and 706

fermionic components to derive constraints on the energy levels with respect to observables 707

such as ⟨tr(X̃ l)⟩. 708

Our next steps is to resolve issues encountered in the above examples. More specifically, we 709

would like to use the new metric from eqn. (69) to determine if a normalizable wave function 710

can be found. In addition, we would like to derive bootstrap constraints using strings of length 711

≤ 3 for the Anharmonic Oscillator Matrix Model. 712

After finishing up with the examples, we would like to study two main facets of the D0- 713

Brane Matrix Model. It has been found that for N = 2, there are zero bound energy states. 714

However, an analytical proof for N ≥ 3 has not been found due to the complexity of the 715

problem. Thus, we hope that bootstrapping the system will provide information about the 716

bound states. Furthermore, we would like to study quasinormal modes of the 10 dimensional 717

black hole that the D0-Brane Matrix Model relates to in the ’t Hooft limit, which has already 718

been done in the super-gravity side but not the matrix side. Finding these would correspond 719

to studying correlator functions ⟨X l(t)X l(t′)⟩ in the matrix setting. 720

Acknowledgments 721

The author would like to thank Professor Mukund Rangamani for his guidance throughout 722

this project. The author also appreciates Dr. Christian Ferko for his helpful discussions. The 723

author further acknowledges support from the National Science Foundation from its REU Site 724

in Physics and Astronomy (NSF Grant No. PHY-2150515) at University of California Davis. 725

References 726

[1] Elias Kiritsis. String theory in a nutshell, volume 21. Princeton University Press, 2019. 727

[2] Juan Maldacena. The large-n limit of superconformal field theories and supergravity. 728

International journal of theoretical physics, 38(4):1113–1133, 1999. 729

[3] Veronika E Hubeny. The ads/cft correspondence. Classical and Quantum Gravity, 32(12): 730
124010, 2015. 731

[4] Gary T Horowitz. Comments on black holes in string theory. Classical and Quantum 732

Gravity, 17(5):1107, 2000. 733

[5] Sebastian de Haro. Quantum gravity and the holographic principle. arXiv preprint hep- 734

th/0107032, 2001. 735

[6] Tom Banks, Willy Fischler, Steven H Shenker, and Leonard Susskind. M theory as a 736
matrix model: A conjecture. In The World in Eleven Dimensions, pages 435–451. CRC 737
Press, 1999. 738

[7] Anna Biggs and Juan Maldacena. Scaling similarities and quasinormal modes of d0 black 739

hole solutions. Journal of High Energy Physics, 2023(11):1–30, 2023. 740

[8] Jan Dereziński and Michał Wrochna. Exactly solvable schrödinger operators. In Annales 741
Henri Poincaré, volume 12, pages 397–418. Springer, 2011. 742

29



[9] Martin Kruczenski, Joao Penedones, and Balt C van Rees. Snowmass white paper: S- 743
matrix bootstrap. arXiv preprint arXiv:2203.02421, 2022. 744

[10] Miguel F Paulos, Joao Penedones, Jonathan Toledo, Balt C Van Rees, and Pedro Vieira. 745

The s-matrix bootstrap. part i: Qft in ads. Journal of High Energy Physics, 2017(11): 746
1–45, 2017. 747

[11] Henry W Lin. Bootstrap bounds on d0-brane quantum mechanics. Journal of High Energy 748

Physics, 2023(6):1–19, 2023. 749

[12] David Berenstein and George Hulsey. Bootstrapping simple qm systems. arXiv preprint 750
arXiv:2108.08757, 2021. 751

[13] Carl M Bender and Stefan Boettcher. Real spectra in non-hermitian hamiltonians having 752

p t symmetry. Physical review letters, 80(24):5243, 1998. 753

[14] Carl M Bender. Introduction to PT -symmetric quantum theory. Contemporary physics, 754

46(4):277–292, 2005. 755

[15] Carl M Bender, Dorje C Brody, and Hugh F Jones. Extension of pt-symmetric quantum 756

mechanics to quantum field theory with cubic interaction. Physical Review D, 70(2):025001, 757
2004. 758

[16] Carl M Bender and Hugh F Jones. Semiclassical calculation of the c operator in pt- 759

symmetric quantum mechanics. Physics Letters A, 328(2-3):102–109, 2004. 760

[17] Philip D Mannheim. Appropriate inner product for pt-symmetric hamiltonians. Physical 761

Review D, 97(4):045001, 2018. 762

[18] Carl M Bender and Hugh F Jones. Interactions of hermitian and non-hermitian hamilto- 763

nians. Journal of Physics A: Mathematical and Theoretical, 41(24):244006, 2008. 764

[19] Sakil Khan, Yuv Agarwal, Devjyoti Tripathy, and Sachin Jain. Bootstrapping pt symmetric 765
hamiltonians. arXiv preprint arXiv:2202.05351, 2022. 766

[20] Hugh F Jones and J Mateo. Equivalent hermitian hamiltonian for the non-hermitian 767

−x4 potential. Physical Review D—Particles, Fields, Gravitation, and Cosmology, 73(8): 768
085002, 2006. 769

[21] Grigoris Panotopoulos. Quasinormal modes of the btz black hole under scalar perturbations 770

with a non-minimal coupling: exact spectrum. General Relativity and Gravitation, 50(6): 771
59, 2018. 772

[22] Vitor Cardoso and Jose PS Lemos. Scalar, electromagnetic, and weyl perturbations of btz 773

black holes: Quasinormal modes. Physical Review D, 63(12):124015, 2001. 774

[23] Yasuyuki Hatsuda and Masashi Kimura. Spectral problems for quasinormal modes of black 775

holes. Universe, 7(12):476, 2021. 776

[24] Masashi Kimura. Note on the parametrized black hole quasinormal ringdown formalism. 777

Physical Review D, 101(6):064031, 2020. 778

[25] Yasuyuki Hatsuda and Masashi Kimura. Semi-analytic expressions for quasinormal modes 779

of slowly rotating kerr black holes. Physical Review D, 102(4):044032, 2020. 780

[26] GA Baker Jr and PR Graves-Morris. Padé approximants. encycl. math. vol. 59, 1996. 781

[27] Tin Sulejmanpasic and Mithat Ünsal. Aspects of perturbation theory in quantum me- 782

chanics: The benderwu mathematica® package. Computer Physics Communications, 783
228:273–289, 2018. 784

30



[28] Carl M Bender and Tai Tsun Wu. Anharmonic oscillator. Physical Review, 184(5):1231, 785
1969. 786

[29] Xizhi Han, Sean A Hartnoll, and Jorrit Kruthoff. Bootstrapping matrix quantum mechan- 787

ics. Physical Review Letters, 125(4):041601, 2020. 788

[30] Edouard Brézin, Claude Itzykson, Giorgio Parisi, and Jean-Bernard Zuber. Planar dia- 789
grams. Communications in Mathematical Physics, 59:35–51, 1978. 790

[31] Juan Maldacena and Alexey Milekhin. To gauge or not to gauge? Journal of High Energy 791

Physics, 2018(4):1–36, 2018. 792

[32] Juan Maldacena. A simple quantum system that describes a black hole. arXiv preprint 793
arXiv:2303.11534, 2023. 794

[33] Joseph Polchinski. M-theory and the light cone. Progress of Theoretical Physics Supple- 795
ment, 134:158–170, 1999. 796

[34] Daniel Kabat, Gilad Lifschytz, and David Lowe. Black hole thermodynamics from calcu- 797
lations in strongly coupled gauge theory. International Journal of Modern Physics A, 16 798
(05):856–865, 2001. 799

[35] Konstantinos N Anagnostopoulos, Masanori Hanada, Jun Nishimura, and Shingo Takeuchi. 800
Monte carlo studies of supersymmetric matrix quantum mechanics with sixteen super- 801
charges at finite temperature. Physical review letters, 100(2):021601, 2008. 802

[36] Masanori Hanada, Yoshifumi Hyakutake, Jun Nishimura, and Shingo Takeuchi. Higher 803
derivative corrections to black hole thermodynamics<? format?> from supersymmetric 804

matrix quantum mechanics. Physical review letters, 102(19):191602, 2009. 805

[37] Denjoe O’Connor. The bfss model on the lattice. Journal of High Energy Physics, 2016 806

(05):167, 2016. 807

A. Bootstrap Constraints for the Anharmonic Oscillator 808

The table with all strings with length L ≤ 2 is:

I X2 P 2 XP PX X P
I N ⟨Tr(X2)⟩ ⟨Tr(P 2)⟩ ⟨Tr(XP )⟩ ⟨Tr(PX)⟩
X2 ⟨Tr(X2)⟩ ⟨Tr(X4)⟩ ⟨Tr(P 2X2)⟩ ⟨Tr(XPX2)⟩ ⟨Tr(PX3)⟩
P 2 ⟨Tr(P 2)⟩ ⟨Tr(X2P 2)⟩ ⟨Tr(P 4)⟩ ⟨Tr(XP 3)⟩ ⟨Tr(PXP 2)⟩
PX ⟨Tr(PX)⟩ ⟨Tr(X2PX)⟩ ⟨Tr(P 3X)⟩ ⟨Tr(XP 2X)⟩ ⟨Tr(PXPX)⟩
XP ⟨Tr(XP )⟩ ⟨Tr(X3P )⟩ ⟨Tr(P 2XP )⟩ ⟨Tr(XPXP )⟩ ⟨Tr(PX2P )⟩
X ⟨Tr(X2)⟩ ⟨Tr(PX)⟩
P ⟨Tr(XP )⟩ ⟨Tr(P 2)⟩

809
The empty elements indicates 0. To simplify this matrix and reduce the degrees of freedom, 810

we use the four constraints outlined in Section 4: 811

1. ⟨[H,O]⟩ = 0, O ∈ S2L 812

2. ⟨Tr(GO)⟩ = 0, O ∈ S2L−2 813

3. ⟨O†⟩ = ⟨O⟩∗, O ∈ S2L 814

4. Cyclicity of the Trace, 815
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where H = Tr(P 2) + Tr(X2) + g
N

Tr(X4) and G = i[X,P ]+NI for the Anharmonic Oscillator 816

with N ×N position/momentum matrices. In addition, let us define Sk as the set of all strings 817

with length ≤ k. From previous work, we know that ⟨Tr(XP )⟩ = -⟨Tr(PX)⟩ = iN2

2
. We also 818

know that ⟨Tr(P 2)⟩ = ⟨Tr(X2)⟩ + 2g
N

⟨Tr(X4)⟩. Our objective is to write everything else in 819

terms of the traces of X2, X4, and other unattainable quantities. 820

First, let us work with XPXP,PXPX,XP 2X, and PX2P . Using the second and third 821

identities, we see that 822

⟨Tr(XPXP )⟩ = ⟨Tr(PX2P )⟩ − N3

2
,

⟨Tr(PXPX)⟩ = ⟨Tr(XP 2X)⟩ − N3

2
.

(90)

We know that (PX2P )† = PX2P , so ⟨Tr(PX2P )⟩ ∈ R. The same thing applies for ⟨Tr(XP 2X)⟩. 823

Thus, both ⟨Tr(XPXP )⟩ = ⟨Tr(PXPX)⟩ ∈ R, since ⟨Tr((XPXP )†)⟩ = ⟨Tr(PXPX)⟩. Fur- 824

thermore, using cyclicity of trace with ⟨Tr(PX2P )⟩ and ⟨Tr(XP 2X)⟩, we find 825

⟨Tr(XP 2X)⟩ = ⟨Tr(P 2X2)⟩+ N3

2
,

⟨Tr(PX2P )⟩ = ⟨Tr(X2P 2)⟩+ N3

2
.

(91)

This of course means that ⟨Tr(P 2X2)⟩ = ⟨Tr(PXPX)⟩ = ⟨Tr(X2P 2)⟩. 826

Constraint Operators
⟨[H,O]⟩ XP,PX,X4

⟨Tr(GO)⟩ S2

⟨Tr(O†)⟩ = ⟨Tr(O)⟩∗ S4

Cyclicity of Trace S4 − S2

Table 7: Table of all operators that were used for each constraint. Operators that produced a
string with length L ≥ 6 were not considered.

Next, we focus on ⟨Tr(PX3)⟩ and its adjacent terms. From the cyclicity of trace, the 827

Hamiltonian (with O = X4), and generator constraints, we see that 828

⟨Tr(PX3)⟩ = ⟨Tr(X3P )⟩ − 2iN⟨Tr(X2)⟩,
⟨Tr(PX3)⟩ = −⟨Tr(X3P )⟩,
⟨Tr(PX3)⟩ = ⟨Tr(XPX2)⟩ − iN⟨Tr(X2)⟩.

(92)

These imply that ⟨Tr(PX3)⟩ = −iN⟨Tr(X2)⟩ and ⟨Tr(XPX2)⟩ = 0. Then, ⟨Tr(X2PX)⟩ = 0 829

as well. 830

The only terms we have not considered are ⟨Tr(XP 3)⟩ and its corresponding terms. From 831

the cyclicity of trace and generator constraints, we find 832

⟨Tr(XP 3)⟩ = ⟨Tr(P 3X)⟩+ 2iN⟨Tr(P 2)⟩,
⟨Tr(XP 3)⟩ = ⟨Tr(PXP 2)⟩+ iN⟨Tr(P 2)⟩.

(93)

Let e = x+iy = ⟨Tr(XP 3)⟩. Then, if we take the conjugate of both sides of the second equation 833

above, then we see that 834

(x+ iy)∗ = ⟨Tr(P 3X)⟩ = ⟨Tr(P 2XP )⟩ − iN⟨Tr(P 2)⟩. (94)
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meaning ⟨Tr(P 2XP )⟩ = x+ iy− iN⟨Tr(P 2)⟩ = ⟨Tr(PXP 2)⟩, making both of these terms real. 835

This means y = iN⟨Tr(P 2)⟩. 836

The updated table can be found in Table 3. Table 7 outlines which operators were used for 837

each constraint. Operators with a total odd power are not considered since the Hamiltonian 838

is even. In addition, note that we cannot find ⟨Tr(X2)⟩,⟨Tr(X4)⟩, ⟨Tr(P 4)⟩, and ⟨Tr(XPXP )⟩ 839

without involving strings of length L = 6. 840
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