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To better understand the onset of charge ordering in high-temperature superconductors, we per-
form Monte Carlo simulations using the Blume-Capel model on a 2D triangular lattice. By working in
the canonical and grand canonical ensemble, we identify transitions in both charge and spin ordering
on the lattice. To aid in this process we introduce several new measurements focused on identifying
loops of spin or charge. We also make modifications to the Binder cumulant to make it applicable to
the model.

I. Introduction

Superconductivity was first demonstrated experi-
mentally in 1911 by Kamerlingh Onnes who, using liq-
uid helium, reduced the temperature of mercury to
4.2K and noticed a sudden drop in resistance[1]. How-
ever, it wasn’t until 1957 that Bardeen, Cooper, and
Schrieffer developed a microscopic theory capable of ex-
plaining the phenomenon[2]. Although this theory suf-
ficed to explain low-temperature “conventional” super-
conductors, the emergence of new high-temperature su-
perconductors required new mechanisms[3, 4].

It was discovered in 1986 that La2−x(Ba,Sr)xCuO had
a critical temperature of Tc ≈ 30 K[5]. This result
has spawned a new class of superconductors known as
cuprate superconductors which, while superconducting
at high temperatures, also have a unique phase diagram.
This diagram is shown in Fig. 1. We see that depending
on the doping, there are different phases in the material
ranging from anti-ferromagnetism to strange metal to
superconductivity. So, the question may be raised as to
whether some of these unique phases are related to its
high-temperature superconducting properties. In this
paper, we will address the question of charge ordering
and use a classical model to demonstrate how doping
can play a role in the creation of charge ordering. In the
process, we determine which measurements are suitable
for identifying the critical temperature at which charge
and spin ordering occur.

II. Order by Disorder

In most scenarios we are accustomed to, increasing
the temperature leads to more disorder. But what if, the
system was naturally disordered at low temperatures?
Now, to understand how that is possible, let us intro-
duce the concept of free energy F = E − T S. This ex-
pression tells us that the free energy at some absolute
temperature T is equal to the difference between the to-
tal internal energy of the system and and product of the
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Figure 1: Figure from Superconductivity: Physics and
Applications by Kristian Fossheim and Alse Sudbø.

“Typical overall phase diagram with doping in high-Tc
cuprate superconductors (AFM = antiferromagnetic
phase).” To the left of the dotted line is a ‘strange’

metal phase.

entropy and absolute temperature T . Now, at a given
temperature T , what state will we find the system in?
We know that for the system to be in equilibrium this
function must be minimized. Thus, by considering how
the free energy can be minimized we can understand
how the system will behave at a given temperature.

From the preceding discussion, we know that the sys-
tem wants to minimize free energy which at low tem-
peratures just amounts to reducing the internal energy
as much as possible, and at high temperatures, to in-
creasing the entropy as much as possible. Thus, if a sys-
tem has a high number of lowest energy states, at low
temperatures, the system can cycle between many low
energy states and will be disordered due to the high fre-
quency of fluctuations. It then seems plausible that by
increasing the temperature, with less necessity to lower
the energy, the system can find a more stable state.

In this paper, we consider a scenario where instead
of introducing thermal fluctuations to initiate order by
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disorder we instead allow for fluctuations in the num-
ber of particles in the system. This effect can be seen
as introducing a new degree of freedom to better model
systems in which doping allows for holes. We hope that
through the introduction of this degree of freedom, we
will see collective behavior even though we are using a
classical rather than a quantum model.

III. Frustration in the Triangular Lattice

The goal of this paper is to study the triangular lat-
tice. The main motivation for this approach is the ex-
istence of frustration in this geometry. As mentioned
before, the most likely set of configurations that we will
find the system in at low temperatures is the set of con-
figurations with the least amount of energy. So, our goal
is to determine which set of configurations minimize the
energy in the triangular lattice to determine if it is a can-
didate for the mechanism of order by disorder.

First, to determine the energy of the system, we need
to start by making some assumptions. In this paper, we
will assume that the material can be represented as a
lattice of particles that can exist in two states either spin
up or spin down. Then, we will assume that the inter-
actions between the spins only occur with spins that are
nearest neighbors. Thus, we can determine the total en-
ergy of the system by looking at each pair of nearest
neighbors and determining the energy associated with
each pair. So, in the absence of an external magnetic
field, we find that the energy is given by:

E = J
∑
⟨ij⟩

sisj

where J is the energy associated with the interactions
between the spins. This equation defines the energy
for what is known as the Ising model and can demon-
strate a transition between ferromagnetism and param-
agnetism. Considering the situations that give the low-
est energy, we see that a negative J requires spins to be
aligned with their neighbors and a positive J requires
spins to be anti-aligned with their neighbors at low tem-
peratures.

In a square lattice, there are only two lowest energy
states regardless of the sign of J either all spins being
up or all spins being down if J is negative or one of the
two alternating patterns of spins if J is positive as shown
in Figure 2. Thus we expect the system to be incredibly
stable at low temperatures.

Now, as the point of the Ising model is to repre-
sent magnetism, let us consider what physical states
these configurations correspond to. When the spins are
aligned in the lowest energy state, we are representing a
ferromagnet as the alignment of the spins creates a net
magnetic moment. In the case where neighboring spins
are anti-aligned in the lowest energy state, we are rep-
resenting an anti-ferromagnet as the spins are aligning

Figure 2: Lowest energy states for the Ising model on a
square lattice

Figure 3: In the anti-ferromagnetic phase, we can’t
arrange the spins in such a way to eliminate frustration

in the triangular lattice.

themselves to ensure the net magnetic moment is zero.
In this case, the limited number of lowest energy states
leads to order at low temperatures and disorder at high
temperatures. However, different geometries will have
different lowest energy configurations. So, to explore
order by disorder, we likely want to use a geometry in
which the number of lowest energy states is large to al-
low for disorder at low temperatures.

To accomplish this, let us consider the triangular lat-
tice. In this case, if J is positive, all spins can’t be anti-
aligned with their neighbors (see Fig. 3). This property
is known as frustration and leads to there being no sta-
ble configuration of spins in the triangular lattice.

Unfortunately, without a stable configuration, the
system cannot undergo long-range spin or charge order.
To get around this, we allow for the existence of holes in
the lattice leading to the possibility of the system find-
ing a stable state when 2/3 of the sites are filled as seen
in Fig. 4.

Our goal is to study this system using two different
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Figure 4: By allowing for vacancies, a stable
configuration exists on the triangular lattice in the

anti-ferromagnetic case

approaches which we will call the canonical and grand
canonical ensembles. We want to see how the filling
fraction and temperature affect the onset of both spin
and charge order in the material. To clarify, when we
refer to spin order we are referring to the alternating
pattern of up and down spins whereas charge order just
refers to the existence of a honeycomb pattern (or some
other stable structure) regardless of the pattern of spins.

IV. Research Question

The goal of our research is to make use of the de-
grees of freedom granted to us by geometric frustra-
tion while also introducing a new degree of freedom.
As the Ising model on a triangular lattice has already
been studied and shown to have no phase transition in
the anti-ferromagnetic case[6], we consider the situation
where rather than every site of the lattice being occu-
pied by a particle we can now have vacancies. Thus
our possible spin values of ±1,0. In studying this sys-
tem we took two separate approaches, in one approach
we allowed fluctuations in the number of spins on the
lattice (Grand Canonical Ensemble), and in the other,
we fixed the number of spins and only allowed them
to swap places or fill holes (Canonical Ensemble). In
studying this system we aim to better understand the
onset of charge and magnetic ordering on a frustrated
lattice to improve our understanding of quantum sys-
tems that display these features.

V. Methods

A. Defining Thermodynamic Quantities

Our main goal is to determine the partition function
Z =

∑
s e
−βEs from this we can calculate all the thermo-

dynamic properties we need. For example:

⟨E⟩ = − ∂
∂β

lnZ

C =
∂⟨E⟩
∂T

⟨M⟩ =
∂
∂H

kT lnZ

χ =
∂⟨M⟩
∂H

where ⟨E⟩ is the average energy at a given temperature,
C is the heat capacity, ⟨M⟩ is the average magnetization
and χ is the magnetic susceptibility. Thus our goal is
to obtain the partition function Z. So, how should we
go about doing this? For a system with a small num-
ber of energy levels, we can simply calculate it directly.
However, as the number of energy states gets larger this
process becomes untenable and we need a new method
to obtain these quantities. As an illustrative example,
consider the two-dimensional Ising model on a square
lattice. In this case, when we have a lattice of N spins,
we must pick each spin to either be up or down. Thus,
we will have 2N different configurations of the system
and will have 2N different terms in our calculation of
the partition function. So, if we want to study large sys-
tems, we will need to find a different way to calculate
this quantity. The answer comes in the form of Monte
Carlo.

B. Monte Carlo

Before we dive into the how let us answer the what.
What is Monte Carlo? In general, a Monte Carlo sim-
ulation approximates the answer to some problem by
randomly sampling points. For example, you can esti-
mate the area of a circle by randomly throwing darts in
a square that contains the circle and comparing the pro-
portion of darts that landed inside the circle to the area
of the square. In our work however, we are trying to esti-
mate the thermodynamic quantities by sampling states
according to the Boltzmann distribution ps = e−βEs

Z . In
the case of the Ising model, the main quantity of inter-
est is the magnetization along with any other quantities
that can signal a phase transition such as the specific
heat. However, these quantities require us to calculate
the partition function which requires a very large sum.
So, instead, we create an algorithm that will produce
the correct probability distribution without needing to
calculate the partition function. This is done by using
a Monte Carlo algorithm that goes through the lattice
and flips a spin with an acceptance probability that sat-
isfies the detailed balance equation. We do this by using
the Metropolis-Hastings rate given by e−β∆E where ∆E
represents the difference in energy between the state we
are attempting to change to and the state that we are
in[7, 8].

C. Blume-Capel Model

To study charge and spin order on the triangular lat-
tice, we use the Blume-Capel Model. The Blume-Capel
model is a variation of the Ising model that allows for
vacancies. To control the vacancies, we add a new term
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∆, the chemical potential, to the total energy of the sys-
tem:

E = J
∑
⟨i,j⟩

sisj −∆
∑
i

s2
i (1)

In this paper, we will be considering the J > 0 case.
Thus, our goal is to determine the temperature at which
the system experiences a transition in both spin and
charge order (each occupied site represents a charge) at
certain values of ∆ or to vary ∆ so that the average den-
sity is constant and obtain a critical temperature for a
particular filling fraction.

1. Canonical Ensemble

The first approach we tried was to keep the num-
ber of spins in the lattice constant. We began by set-
ting n↑ = n↓ = N/3 where N is the number of lattice
sites. In this scenario, each proposed change in the
Monte Carlo code is a proposed swap between neighbor-
ing sites rather than a proposed spin flip. Thus, it will
take the system quite some time to reach equilibrium
as the particles have to move to their proper location.
However, this approach did have the advantage of being
able to control the total number of spins without having
to determine the proper value of ∆ to get a particular
average density at a particular temperature.

2. Grand Canonical Ensemble

The other approach used was the Grand Canonical
Ensemble. Although we obtained many preliminary
results through the Canonical Ensemble, once we
started working in the Grand Canonical Ensemble, we
tended to use it to produce the rest of our results. This
is because by varying the value of ∆ we can realize
a much richer phase diagram. Also, since we change
the system through spin flips the system can reach
equilibrium much quicker. Additionally, if necessary,
we can tune the value of ∆ to obtain constant average
filling. However, in practice we were only successful in
obtaining constant average filling for 2/3 filling as the
dependence on ∆ is incredibly sensitive as seen in Fig. 5.

VI. Results

A. Quantities of Interest

Our work is a variation on the Ising model. The differ-
ence between the Blume-Capel and Ising models is the
ability for sites to be unoccupied and a new term in the

Figure 5: At kT /J = 0.1 the density as a function of D
(∆) is very stable for 2/3 filling but is unstable if we go

below 2/3 filling.

energy (a chemical potential) that relates to the number
of occupied sites.

As our work builds off the traditional Ising model, let
us look to the Ising model to determine what measure-
ments to make. Important measurements in the Ising
model include the Binder cumulant which is defined as
1− ⟨M4⟩

3⟨M2⟩2 where the M refers to the magnetization M =∑
i si in the ferromagnetic case and the staggered magne-

tization MAF =
∑

i(−1)isi in the anti-ferromagnetic case.
Thus, in the low-temperature limit, the absolute mag-
netization |M | will just be the number of spins as all
spins will point in the same direction in the ferromag-
netic case or they will be anti-aligned so the absolute
value of the alternating sum will give the number of
spins. Thus the Binder cumulant will be 1−N4/3(N2)2 =
1 − 1/3 = 2/3. In the high-temperature limit, the spins
are random. In this case, we see that the fourth mo-
ment of the magnetization ⟨M4⟩ = ⟨

∑
i si

∑
j sj

∑
k sk

∑
l sl⟩

where all the sums are independent. Because the spins
are random, the expectation value will vanish unless we
have two pairs of matching indices i.e. i = j,k = l or
i = k, j = l, or i = l, j = k thus the expectation value of the
numerator is 3N2 as there are three ways to pair the in-
dices and N values associated with each pair of match-
ing indices. The denominator in the high-temperature
limit will be 3⟨M2⟩2 = 3⟨

∑
i si

∑
j sj⟩2 where again, the

expectation value will vanish unless the indices match
which will happen N times making the denominator
3N2. Thus, in the high-temperature limit, the Binder
cumulant becomes 1− 3N2

3N2 = 0. This is the case no mat-
ter the lattice size. However, at the critical temperature,
the value of the Binder cumulant will be the same re-
gardless of the lattice size. This means that the critical
temperature can be determined by noticing where the
Binder cumulants of different lattice sizes cross.

Another quantity of interest is the magnetic suscepti-
bility. The magnetic susceptibility χ is the response of
the magnetization to a change in the applied magnetic
field χ = dM

dB . In the Ising model, the energy in the pres-
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ence of an external magnetic field is given by:

E = J
∑
⟨i,j⟩

sisj −B
∑
i

si (2)

where the probability of the system being in a given con-
figuration s is given by the Boltzmann distribution

ps =
e−βEs∑
s e
−βEs

so the average magnetic susceptibility χ is given by:

d⟨M⟩
dB

=
d
dB

∑
s

Msps

=
d
dB

∑
sMse

−β(J
∑
⟨i,j⟩ sisj−BMs)∑

s e
−β(J

∑
⟨i,j⟩ sisj−BMs)

= β

∑sM
2
s e
−βEs∑

s e
−βEs

−
(∑

sMse
−βES∑

s e
−βEs

)2
= β

(
⟨M2⟩ − ⟨M⟩2

)
This quantity will diverge at the critical temperature

as the magnetization will suddenly change at the critical
temperature.

Finally, we consider the specific heat which is given
by C = d⟨E⟩

dT which similarly to the susceptibility can be

shown to be equal to 1
kT 2

(
⟨E2⟩ − ⟨E⟩2

)
. This quantity

will also diverge at the critical temperature as it takes
a lot of energy to change the temperature of a system
while it is undergoing a phase transition. This can be
seen by examining the results of simulations performed
on the Ising model on a square lattice as seen in Fig. 6.

However, since we want to determine where spin and
charge order appear, we will also introduce new mea-
surements. Before getting into these measurements,
however, it makes sense to redefine our lattice in terms
of sublattices. If we are at 2/3 filling, we expect to ob-
tain a honeycomb structure with alternating spins along
the perimeter of the honeycomb. So, let us define the set
of all nodes containing an up spin to be one sublattice,
the set of all nodes containing a down spin to be an-
other, and the set of all empty sites to be the final sublat-
tice (see Fig. 7). Now, we will define the measurements
in terms of these sublattices. We introduce two new
measurements to help us see changes in both spin and
charge order. For both of these measurements, we will
consider a small loop on the lattice that is the perimeter
of the honeycomb structure we expect to see. One mea-
surement involves taking the product around this loop
while the other involves taking the sum of the square of
the elements of the loop (see Fig. 8). The first measure-
ment will return the value of -1 if the loop only contains
elements of the two sublattices that contain spins. This
is because we are taking a product over six spins with
half up and half down. This measurement is sensitive

(a) Binder cumulant in the Ising model on a square lattice. The
crossing of Binder cumulants of different lattice sizes indicates

a phase transition.

(b) Susceptibility in the Ising model on a square lattice. The
peak in the susceptibility indicates a phase transition.

(c) Specific heat in the Ising model on a square lattice. The peak
indicates a phase transition.

Figure 6
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Figure 7: The three different sublattices on a triangular
lattice. Each sublattice a is given an index a = 1,2,3 and

is represented by a different color. In a perfectly
ordered phase, one sublattice will only contain up

spins, one sublattice will only contain down spins and
the other will be empty.

Figure 8: Diagram showing the new measurements
involving loops that we are using to detect spin and
charge order. The loop operator takes the product of

spins in a loop and the proportion of neighbors
occupied counts the number of occupied neighbors

surrounding an empty site.

to a change in spin order as a single spin flip will cause
the value to drastically change. The second measure-
ment, involving the sum of the squares of the elements
of this loop, will only tell us about charge order as both
up and down spins will return the same value.

B. Simulation Results

Now that we know what we want to measure, let us
see how the system behaves. Our first step was to con-
firm the simulation worked by comparing our results to

−1.0

−0.8

−0.6

−0.4

0.0 2.5 5.0 7.5 10.0
T

〈E
〉

exact (enum)

Monte Carlo

CE :  N0 = 3 Nu = 3 Nd = 3

3x3 Triangular Lattice  J=1

Figure 9: Comparison of Monte Carlo results (red bars)
with exact enumeration (blue line) for a 3× 3 lattice in

the canonical ensemble with N↑ = N↓ = N0 = 3. The
high temperature limit is ⟨E(T =∞)⟩ = −1/4. See Eq. 3.

Figure 10: Comparison of Monte Carlo results (red
bars) with exact enumeration (blue line) for a 3× 3

lattice in the grand canonical ensemble with D/J = 2.

results obtained via exact enumeration over all of the
states (see Figs. 9 and 10).

We see that our code does agree with enumeration and
thus are confident enough to go forward and try larger
lattice sizes. Also, it should be noted that in the canon-
ical ensemble, the energy of the system does not van-
ish at high temperatures. This is due to our restriction
on the amount of spins of a certain type. To make this
clearer, at high temperatures we expect the system to
want to maximize entropy so all states should be equally
likely thus, we would expect there to be an equal likeli-
hood of the neighboring spin to be up, down, or empty
meaning on average the product of a spin with its neigh-
boring spin should be zero. Thus, when we sum over all
nearest-neighbor pairs of spins, we should get zero on
average and the energy should vanish at high tempera-
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tures. However, this is not what happens in the canon-
ical ensemble. The reason for this is that by limiting
the number of spins, we are not equally likely to have
each type of spin as a neighbor. To see this, without loss
of generality, consider sitting at a site with an up spin,
then there are N/3 down spins, N/3 empty sites, and
N/3−1 up spins left to choose a neighbor from, thus the
likelihood of having a neighbor with a down spin is N/3

N−1 ,
the likelihood for a neighbor being empty is N/3

N−1 and the
likelihood of the neighbor being an up spin is N/3−1

N−1 as-
suming we have no bias towards a particular spin type.
Thus, if we consider the energy per particle we get:

lim
T→∞

〈
E(T )
N

〉
=

1
N

zJ
2

(N
3

(
(1)(1)

N/3− 1
N − 1

+ (1)(−1)
N/3
N − 1

+(−1)(1)
N/3
N − 1

+ (−1)(−1)
N/3− 1
N − 1

))
=
zJ
6

( −2
N − 1

)
=

zJ
3(N − 1)

=
2J

N − 1
For a triangular lattice (3)

Thus, we see that the energy will vanish at high temper-
atures in the thermodynamic limit (N → ∞) but only
converge to that result at a slow 1/N rate.

Now that we have a working code, we want to com-
pare our results from both the canonical and grand
canonical ensembles. First, let us consider the constant
∆ case. In this case, the density can change in the grand
canonical ensemble so we don’t expect it to agree with
the canonical ensemble. However, let us see what results
we get in both cases. The results are given in Fig. 11.

We find that despite the density being able to change
with temperature in the constant ∆ case, the specific
heat curve is smooth. And with our data in the canoni-
cal ensemble, we see that we have a shoulder in the spe-
cific heat. The mechanism responsible for this shoulder
is still unknown but it is an interesting feature that we
don’t see in the Ising model on a square lattice.

Now, let us see how our specific heat data from the
GCE with constant average density compares with that
obtained from the canonical ensemble. The results,
shown in Fig. 12 show that any results we get for 2/3 fill-
ing in the canonical ensemble can easily be reproduced
in the grand canonical ensemble by tuning the value of
∆ to ensure an average of 2/3 filling at a given tempera-
ture.

From our specific heat results, we see that we have
a critical temperature near kT = 0.373J . We now look
to other measurements to confirm these results. Let us
consider the new measurements involving loops. We
will start with a measurement of the number of neigh-
bors an unoccupied site has. In the canonical ensemble,
we looked at the number of neighbors surrounding an
occupied site. The reason we chose this measurement

(a) Specific Heat in the Canonical Ensemble. We can use the
peak to determine a phase transition. An interesting feature is
the shoulder on the graph. It is not yet understood where this

shoulder comes from.

(b) Specific Heat in the grand canonical ensemble where ∆ = 0.
Although the density isn’t being held constant, the curve is

smooth. We can also see that the shoulder has disappeared and
the peak is at a different place. Thus, to compare the canonical

and grand canonical ensembles, we need a way to hold the
density constant.

Figure 11

was because in the ordered phase we expect it to have a
value of one and at high temperatures it should be 2/3,
so we hope to see a large drop at the critical temperature
indicating a phase transition.

The results, shown in Fig. 13 show that we have the
sharpest change in the proportion of occupied neigh-
bors near kT = 0.375J which agrees with our previ-
ous approximate critical temperature of kT = 0.373J .
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(a) Specific Heat GCE with ⟨ρ⟩ = 2/3. We see that in holding the
density constant, we can reproduce the results of the canonical

ensemble.

(b) Specific Heat CE and GCE with ρ = 2/3. Comparing the
canonical and grand canonical ensemble with the ∆ tuned to

give constant density shows agreement between the two.

Figure 12

This seems to suggest the specific heat peak is telling us
where charge order occurs in the 2/3 filled lattice case.

Next, we look at the loop operators which should tell
us about both charge and spin order as a single hole in
the loop causes the loop operator to return a value of
zero, and a single spin flip in the loop causes the sign
of the loop operator to change. In the case of the loop
operators however, rather than taking the loop around
empty sites, I took all the loops around the sites in the
sublattice with the largest amount of vacancies (lowest
charge density). The three different sublattices on the
triangular lattice are shown in Fig. 7.

The results obtained from the loop operator are
shown in Fig. 14.

As we can see, the loop operator gives a slightly differ-
ent critical temperature. So, since this measurement is
sensitive to spin order as well as charge order, it may be
the case that the spin order disappears at a lower tem-
perature than the charge order leading to the discrep-
ancy in the critical temperature between the loop oper-

(a) Proportion of occupied sites surrounding an unoccupied site
in the canonical ensemble. A phase transition isn’t obvious from

this graph so we take the derivative to see if we can see where
one occurs.

(b) Derivative of the previous graph. We see that there is a spike
in the derivative and it occurs near our critical value of

kT = .373J

Figure 13
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(a) Average value of the product of the loop surrounding an
element of the sublattice with the smallest number of spins.

(b) Derivative of the previous graph. We see that the spin order
may have been lost before the charge order. However, this

critical temperature is still close to our critical value of
kT = 0.373J .

Figure 14

ator and the specific heat.
Finally, we want to see if we could recreate the Binder

crossing. However, if we were working in the canonical
ensemble, the number of spins is fixed so the magne-
tization will always be zero. A way to get around this
was to take the magnetization of each sublattice sepa-
rately. The first thing we tried was to define the Binder
ratio as the average Binder ratio of each sublattice. How-
ever, as one sublattice was empty at low temperatures

this caused issues as the Binder ratio is defined as ⟨M
4⟩

⟨M2⟩2
so zero magnetization would lead to division by zero.
We can get around this by removing the Binder ratio
from the average if it involves division by zero. How-
ever, this still doesn’t fix the problem completely. To
see this, consider a sublattice that receives a single spin
at one time step of the Monte Carlo simulation and is

empty the rest of the time. Then, ⟨M4⟩ = (±1)4

N = 1
N

whereas ⟨M2⟩2 =
(

(±1)4

N

)2
= 1

N2 giving a Binder ratio of

1/N
1/N2 = N (the number of Monte Carlo steps). Thus, if
we run our simulation for a long time this mostly empty
sublattice will bias our average Binder ratio to be huge.
To get around this, instead of directly taking the average
Binder ratio, we take the ratio of the weighted average
of ⟨M4⟩ and the square of the weighted average of ⟨M2⟩
where the weights are determined by the average num-
ber of spins in that sublattice:

Bweighted =
∑

α⟨M4⟩wα

(
∑

α⟨M2⟩wα)2

Where the weight wα =
⟨
∑

i∈α s
2
i ⟩∑

α⟨
∑

i∈α s
2
i ⟩

In this case, we unfortunately do not have any crossings.
However, when taking the derivative, we see a peak near
our specific heat peak as shown in Fig. 15 We see that we
get a slightly higher critical temperature than we got in
the specific heat. This may be a sign that in the canonical
ensemble, spin order disappears at a higher temperature
than charge order which is the opposite of the case we
found in the GCE. However, seeing as we have a fixed
number of spins, this may account for that discrepancy.

Another attempt at defining a sublattice Binder ra-
tio shown in Fig. 16 was obtained by just throwing
out Binder ratios greater than 3 (as that’s the high-
temperature limit for the Binder ratio) and averaging
what’s left over. However, in this case, the Binder ratio
isn’t smooth and has no clear crossing, so it seems like
this definition doesn’t properly weigh the sublattices ei-
ther.

VII. Conclusion

In conclusion, the Blume-Capel model on a triangular
lattice allows us to explore spin and charge order in a
purely classical model. Our results show that it is likely
that the spin order is lost at lower temperatures than the
charge order.

The clash between spin order and charge order may
be the key to understanding the shoulder in the specific
heat. However, based on our data, there is no obvious
correlation between the two, and the cause of the shoul-
der is still unknown. On the other hand, through this
model, we obtain an estimated critical temperature of
kT ≈ 0.373J based on the specific heat plot with the loss
of charge order being more closely related to this peak.

Furthermore, our attempt to modify the Binder ratio
turned out to be unsuccessful. This is likely because
one sublattice will nearly always be empty while the
other two are nearly always full at low temperatures
thus we need some method of controlling the value of
the Binder ratio at low temperatures if we are to con-
sider the fluctuations in magnetization in all three sub-
lattices or ignore a sublattice entirely. Both solutions
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(a) Weighted Binder ratio in the Canonical Ensemble. We see
that in the way it is currently defined, we have no crossing.

(b) Derivative of the previous graph. The derivative of the
weighted Binder ratio gives a small peak near our critical

temperature of kT = 0.373J so it seems that this measurement
does somehow relate to the critical temperature just not in the

usual way we would expect the Binder cumulant to behave.

Figure 15

result in a Binder cumulant that is unable to obtain a
crossing and is thus unable to be used to determine a
critical temperature. As a result, we must rely on the
critical temperature obtained from the specific heat and
our loop measurements.

Further work is still needed, however, to create a

phase diagram, understand the shoulder in the specific

Figure 16: Calculating the Binder cumulant for each
sublattice and averaging over them after throwing out
Binder cumulants greater than 3. We see that there is

no clear crossing.

heat, and obtain critical exponents associated with the
phase transitions.
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