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The transverse-field Ising model is a simple model of quantum phase transitions that can describe
the quadrupolar behavior of Thulium Vanadate. To describe properties of this material it is im-
portant to calculate the transverse magnetic susceptibility (χxx). In this paper, we describe three
methods for numerically determining χxx: mean-field theory, exact diagonalization, and numerical
linked-cluster expansion (NLC). We found that the mean-field theory underestimates χxx close to
the phase boundary. Numerical linked-cluster expansions provide accurate quantitative calculations
of the transverse susceptibility in the paramagnetic phase. Using NLC, we find that, at the quantum
critical point, χzz diverges as T−k when T → 0 where k is between 1.9 and 2.6.

I. INTRODUCTION

The transverse-field Ising model is a simple model of
quantum phase transitions. However, the magnetic prop-
erties in the transverse direction has not been well studied
for dimensions greater than 1. These properties, and the
static χxx specifically, are useful in understanding NMR
studies of Thulium Vanadate. [1]

In this paper, we will describe three different methods
of calculating χxx: the single site mean-field approxima-
tion, exact diagonalization, and numerical linked-cluster
expansion. Mean-field theory gives a qualitative picture
for the susceptibility in the paramagnetic and the ferro-
magnetic phases. The numerical linked-cluster method
converges in the paramagnetic phase but not in the fer-
romagnetic phase. In the paramagnetic phase it gives
accurate calculations of the transverse susceptibility in
the thermodynamic limit. We then show how numerical
linked-cluster expansion is used to determine the diver-
gence of susceptibility with temperature at the quantum
critical point.

II. BACKGROUND

The classical Ising model consists of spins on a lattice
with each spin site interacting with nearest neighbors.
The transverse-field Ising model adds a magnetic field in
the x direction in order to add quantum fluctuations to
the model. The Hamiltonian for the transverse-field Ising
model is given by

Ĥ = −J
∑
<i,j>

σ̂z
i σ̂

z
j − h

∑
i

σ̂x
i (1)

where < i, j > denotes the sum over nearest neighbors
in the lattice and σ̂z

i refers to the Pauli spin operator in
the z direction for site i. The interaction, J , is a con-
stant which is set to 1 in subsequent calculations. When
J is positive, aligned neighboring spins correspond to a
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lower energy state. The transverse-field term, h, corre-
sponds to the strength of the magnetic field. Because the
Hamiltonian contains non-commuting spin operators, we
observe quantum fluctuations.
A useful quantity to measure is the average spin of the

entire system in some direction, say x̂. This is called the
magnetization and is defined as

mx =
1

N
Mx =

1

N

N∑
i

⟨σx
i ⟩ (2)

where N is the total number of sites. We also define the
susceptibility as

χxx =
∂mx

∂h
(3)

where h is the transverse magnetic field from Eq. 1.
To calculate these quantities, we often use the partition

function,

Z =
∑
α

e−βEα =
∑
α

⟨α|e−βĤ |α⟩ = Tr
(
e−βĤ

)
(4)

where α is a complete set of basis states for our system.
The partition function can be thought of as a sum over
all states of the system which is weighted by energy ac-
cording to e−Eαβ where Eα is the energy of the state and
β = 1/T where T is the temperature of the environment
(setting the Boltzmann constant to unity). Then, the
magnetization can be written as

mx = T
∂

∂h
ln(Z). (5)

III. MEAN-FIELD THEORY

Mean-Field Theory approximates the interacting
many-spin system with a single site problem where each
spin interacts with an external field and the molecular
field of the other spins. Using this approximation, we can
estimate the phase boundary between the ferromagnetic
and paramagnetic phases and an approximate expression
for the magnetic susceptibility.
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A. Single Spin in Applied Field

First, let us consider the case of a single spin described
by the Hamiltonian

Ĥ = −hσ̂x. (6)

Then, the magnetization in the x direction is

mx = ⟨σx⟩ =
∑

α⟨α|σ̂xe−βĤ |α⟩∑
α⟨α|e−βĤ |α⟩

=

∑
α⟨α|σ̂xeβhσ̂

x |α⟩∑
α⟨α|eβhσ̂

x |α⟩
(7)

where we sum over basis states α. In the x basis, we have
two states: σx = ±1. So,

mx =

∑
σx=±1 σ

xeβhσ
x∑

σx=±1 e
βhσx =

eβh − e−βh

eβh + e−βh
. (8)

Thus, the magnetization in the x direction for a single
site is

mx = tanh(βh) (9)

and the transverse susceptibility is

χxx =
∂mx

∂h
= βsech2(βh). (10)

B. Expanding to Multiple Sites

For the many spin problem, we can use the Mean-Field
Approximation by assuming that each spin interacts with
the average spin of the system instead of its nearest neigh-
bors [2]. So, we average out local interactions and decou-
ple the spins. The Hamiltonian becomes

ĤMF = −Jqmz

∑
i

σ̂z
i − h

∑
i

σ̂x
i (11)

where q is the number of neighbors each spin site has. In a
one-dimensional lattice, q = 2, and in a two-dimensional
square lattice, q = 4. We have also added a new un-
known variable, mz, which is the magnetization in the z
direction, which is to be determined self-consistently.

Since the spins are decoupled in this approximation,
we can consider the contribution to the Hamiltonian of
only spin i:

ĤMF,i = −Jqmzσ̂
z
i − hσ̂x

i . (12)

Now, for a site i, we can define the operator

σ̂γ
i =

1

γ
(Jqmzσ̂

z
i + hσ̂x

i ) (13)

with a normalization term γ2 = (Jqm)2+h2 such that σ̂γ
i

has eigenvalues ±1. This can be thought of the spin oper-
ator corresponding to the direction net magnetic moment

h

Jqmz

γ

θ

FIG. 1. Diagram of Effective Field in Mean-Field Approxi-
mation. A transverse field h is applied in the x direction. The
Jqmz component in the y direction comes from interactions
with other spins on the lattice as calculated using the Mean-
Field Approximation. The γ is defined to be the net moment
with an associated spin operator defined in Eq. 13.

as shown in Fig. 1. Using the single spin results from ear-
lier, we get that the magnetization in the γ direction for
the entire system is

mγ = ⟨σγ⟩ = tanhβγ. (14)

To solve for mz,

mz = sin θmγ =
Jqmz

γ
tanh(βγ). (15)

Now, we have two cases ofmz. In one case, mz = 0 and
the system is paramagnetic. In the other case, mz ̸= 0
and the system is ferromagnetic. In the ferromagnetic
case, we can write Eq. 15 as

1

Jq
=

1

γ
tanh(βγ). (16)

This equation is the self-consistency equation and it gives
us allowed values of γ. Using this equation, we can now
estimate the phase boundary. To do this, we take the
limit as mz → 0 and we get that γ → h. Then, Eq. 16
becomes

h

Jq
= tanh(βh). (17)

Solving for critical temperature with T = 1/β yields

T =
h

arctanh(h/Jq)
. (18)

At T = 0 we find that the critical field strength is hc = Jq
and similarly at zero field strength the critical temper-
ature is Tc = Jq. Substituting this into the previous
equation,

T

Tc
=

h/hc

arctanh(h/hc)
. (19)

This equation is graphed in Fig. 2 and we now have a
qualitative picture of the phase boundary. The phase
boundary extends to T = 0, indicating a quantum criti-
cal point (QCP). However, this result is just an approxi-
mation and does not correctly determine critical temper-
atures and transverse fields.
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FIG. 2. Estimate of Phase Boundary from Mean-Field Ap-
proximation. For small temperatures and transverse fields, we
expect to be in an ordered, ferromagnetic state with mz ̸= 0.
For larger temperatures and transverse fields we expect to be
in a disordered, paramagnetic state with mz = 0.

To calculate the transverse magnetic susceptibility in
the paramagnetic phase, note that our single site Mean-
Field Hamiltonian in Eq. 12 turns into the single spin
Hamiltonian in Eq. 6. So, the susceptibility is the same
as we calculated in Eq. 10.

To calculate the susceptibility in the ferromagnetic
phase, we first calculate the magnetization as

mx = cos θmγ =
h

γ
tanh(βγ). (20)

Then,

χxx =
∂mx

∂h
=

1

γ
tanh(βγ). (21)

However, we can substitute Eq. 16 into the equation
above. Hence, the transverse magnetic susceptibility in
the ferromagnetic phase is

χxx =
1

Jq
. (22)

Using mean-field theory, we can see how the applying
a transverse magnetic field to the Ising model creates a
phase boundary with a QCP at T = 0. However, this
result is still an approximation and to get more accurate
results, we must use numerical methods.

IV. EXACT DIAGONALIZATION

The method of exact diagonalization calculates proper-
ties of the system numerically. We start by representing
the Hamiltonian as a matrix using the basis which con-
sists of the Cartesian product, for each particle, of spin
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FIG. 3. Exact Diagonalization of χxx in One-Dimensional
Lattice. The color of the heatmap corresponds to χxx. The
dashed line traces a peak in the calculated χxx and the solid
line is the mean-field theory estimate of the phase boundary
with q = 2 in one dimension. The difference between mean-
field theory and our calculation comes from mean-field theory
erasing disorder in the system, leading to a larger range of
values in the ordered phase. The lattice consists of 9 sites and
has periodic boundary conditions with the Ising interaction,
J , set to unity.

quantizations in the z direction. Then, the eigenvalues
of the Hamiltonian are found numerically and the parti-
tion function is calculated according to Eq. 4 [3]. Then,
numerical derivatives are taken according to Eq. 5 and

χxx = T
∂2

∂h2
ln(Z). (23)

Similarly, heat capacity can be calculated using

C =
∂2

∂T 2
(T ln(Z)) . (24)

We can also calculate the longitudinal susceptibility,
χzz, using

χzz = T
∂2

∂h2
z

ln(Z) (25)

where we add an extra term to the Hamiltonian,

Ĥ = −J
∑
<i,j>

σ̂z
i σ̂

z
j − h

∑
i

σ̂x
i − hz

∑
i

σ̂z
i (26)

with hz corresponding to a magnetic field applied in the
z-direction.
The results of exact diagonalization results for a one-

dimensional lattice, shown in Fig. 3. There is a short-
range order inside the region predicted to be ferromag-
netic by the mean-field theory. However, there is no
phase transition. So, the exact diagonalization results
disagree with the mean-field theory, indicating that the
mean-field theory is insufficient in describing χxx.
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FIG. 4. Exact Diagonalization: χxx on a 3 × 3 Square Lat-
tice. The Xs mark the quantum critical point at hc = 3.044
and critical temperature at Tc = 2.269 for the 2D transverse-
field Ising model. [4, 5] The solid white line is the mean-field
theory estimate of the phase boundary. The dashed white
line in χxx outlines the maximum susceptibility over various
temperatures, indicating a phase boundary, but with hc much
lower than the true value. The χzz diverges as T → 0 in the
ferromagnetic phase, however, it converges for field strengths
well below hc = 3.044. A 3× 3 lattice is too small to account
for finite size effects.

The results of exact diagonalization on a two-
dimensional square lattice is shown in figure 4. The χxx is
qualitatively similar result to one dimension, but the cal-
culated critical field strength of about 2 is smaller than
the literature value of hc = 3.044. Similarly, the χzz

should diverge for field strengths less than 3.044, but we
find convergence down to 2. However, a 3 × 3 lattice is
not large enough to ensure that there are no finite size
effects. Usually, measurements made for multiple sys-
tem sizes are extrapolated to determine the properties of
an infinite system. Because the size of the Hamiltonian
is exponential with the number of particles, measuring
properties for systems larger than 3× 3 becomes compu-

tationally expensive.

V. NUMERICAL LINKED-CLUSTER
EXPANSION

To work around the computational cost of exact di-
agonalization, we used the numerical linked-cluster ex-
pansion. This method involves using the principle of
inclusion-exclusion to estimate the properties of an in-
finite lattice. To do this, we must calculate weights of
various linked clusters. [6]
A linked cluster is a subgraph of a d dimensional lattice

in which every site has at least one neighbor. A linked
cluster has free boundary conditions and we calculate
extensive properties of the cluster, like χxx using exact
diagonalization. Then, the weights, W , are calculated
recursively for a cluster c using

W (c) = F (c)−
∑
s∈c

W (s) (27)

where F is a property of the cluster and s is a subgraph
of c.
After weights have been calculated for sufficiently clus-

ters some number of bonds, we can estimate the intensive
property of an infinite system as

f(c) =
∑

distinct c

W (c)L(c) (28)

where L(c) is the number of distinct ways the cluster can
be embedded in a lattice.
If we calculate the weights W (c) up to clusters with a

certain number of bonds nc, we can calculate f(c) effi-
ciently. The number of bonds we calculate up to is called
the order of the NLC expansion and results that agree
for multiple orders have converged to the infinite-lattice
solution.
Multiple orders of the NLC expansion for χxx are

shown in Fig. 5 against exact diagonalization and the
single-site mean-field approximation. For h = 1, the
NLC calculation breaks down on approach to the phase
transition. However, we can see that the NLC disagrees
with the exact diagonalization below temperatures of 4,
where the exact diagonalization predicts a near-constant
χxx on approach to the phase transition. This is due to
the finite-size effects when diagonalizing a 3×3 lattice. In
the paramagnetic phase, the NLC calculation converges
and is accurate.

VI. FUTURE WORK: SUSCEPTIBILITY
DIVERGENCE AT QCP

Approaching the quantum critical point (QCP), we ex-
pect a divergence in the χzz to infinity as T → 0 for an
infinite lattice. In NLC, this divergence is characterized
by
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FIG. 5. Several Orders of Numerical Linked-Cluster Expan-
sion Results for χxx with h = 1 in (A) and h = 5 in (B).
NLC orders from 5 to 8 are graphed as indicated in the leg-
end along with the exact diagonalization and the mean-field
approximation (MFA). It converges, for large field strengths
or temperatures, but breaks down on approach to the tran-
sition. In (A), NLC and exact diagonalization agree for all
temperatures.

χ = Oαf(TO−β) (29)

or equivalently

χ

Oα
= f

(
T

Oβ

)
where O is the order of the NLC, f is an arbitrary func-
tion, and α and β are constants. By comparing different
orders of NLC, α and β can be determined. As O → ∞,
we expect χ to be independent of O. So, if f is a func-
tion with lowest power k, then k = −α/β in the limit
as O → ∞. Therefore, the order of the temperature
divergence is T−k as T → 0.
The χzz at the critical field strength is shown in panel

(A) of Fig. 6 for orders of NLC from 8 to 11. Since
χzz quickly converges to a constant value as T → 0 for
all orders of NLC, we take that value to be the zero-
temperature χzz at a certain order and fit it against the
order to determine α = 1.2625 as shown in panel (B)
of Fig. 6. Then, we normalize the χzz on the y-axis of
Fig. 7 (A) and we similarly scale the x-axis of Fig. 7 (B-
D) to plot a measurement of f from Eq. 29. We find that
β from 0.5 to 0.7 result in similar graphs for all NLC
orders. Therefore, we estimate that T goes to a power
between 1.9 and 2.6 with temperature at the QCP. The
precision of this calculation can be improved by taking
higher orders of NLC to estimate β more accurately.
For χxx, we obtain different qualitative functional

forms for orders of NLC as high as 11 as seen in Fig. 8.
Further investigation of χxx would require more compu-
tational time to perform higher order NLC calculations.

VII. CONCLUSION

In this paper, we used the numerical linked-cluster
(NLC) expansion to calculate the divergence of χzz at
the QCP. We have also shown that NLC accurately cal-
culates χxx in the paramagnetic phase at the thermody-
namic limit. Future works could determine χxx in the
ferromagnetic phase using other methods.
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FIG. 6. Determining α for χzz. Panel (A) shows the χzz at the critical field strength for several orders of NLC against
temperature. The χzz reaches a constant for small temperatures. We use the χzz at T = 0.05 in (B) to determine α by fitting
the the log of χzz against the NLC order and the slope of this fit is α. The normalized χzz is shown in (C) where the y-axis is
divided by Oα where O is the order of the NLC.
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FIG. 7. Determining β for χzz. The χzz is graphed at the critical field strength for several orders against the temperature.
The y-axis is normalized by dividing by Oα where O is the NLC order and α = 1.2625. The x-axis is normalized by dividing
by Oβ where beta is -0.5 in (A), -0.6 in (B), and -0.7 in (C). Hence, the graph shown is our measurement of f from Eq. 29.
Since the graphs of f match for all orders, we know that the values of α and β are accurate.
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FIG. 8. NLC Calculation of χxx for Multiple Orders. Since
the shape of the function changes up to 11th order, with a flat
section at a temperature below 2 in 11th order, we cannot
match χxx to the scaling behavior in Eq. 29. Higher order
NLC calculations are needed.


