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Abstract

We calculate the susceptibility, equal-time structure factor and entanglement entropy for quan-

tum spin glasses of sizes 8, 9, 10, 12 and 16 sites as a function of the transverse magnetic field

strength, and compare it to the Linked Cluster series expansion method obtained by Young and

Singh [1]. We also calculate the local susceptibility χii for different transverse field values, and

computationally confirm that at high fields the distribution of local susceptibility approaches Gaus-

sian. Going from high field to low field, we identify the long-tailed distribution in the Griffiths

phase and the large local susceptibilities in the spin glass phase. Lastly, as an on-going project, we

also employ perturbation theory to mainly target studying entanglement entropy at very low field

values, but this method has its obvious limitations regarding the size of the system and the field

strength that we can study. Here, we simply present some results that we have calculated using

perturbation theory.
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I Spin glass review

In this project we consider the Transverse Field Ising (TFI) spin glass, where the classical spin-spin

coupling energies follow the random bimodal distribution. It Hamiltonian is the sum of the classical

part and the quantum part:

H “ H0 ` H1. (1)

The classical Ising Hamiltonian is

H0 “ ´
ÿ

xi,jy

Jijσ
z
i σ

z
j (2)

where Jij P t`1,´1u (bimodal distribution) and the quantum Hamiltonian is

H1 “ ´hx
ÿ

i

σx
i . (3)

We aim to measure the spin glass susceptibility under the TFI model for 2D nearest-neighbor finite

clusters (e.g. 3 by 3, 4 by 4) using exact diagonalization. Roughly speaking, for any given transverse

field value hx, the spin glass susceptibility is computed by diagonalizing the Hamiltonian with an

added longitudinal field hkz (see the following section for details).

II Local susceptibility χii

In general, susceptibility is a measurement of how “susceptible” (how rapidly does it change) the

magnetization of the system is in response to external magnetic fields. Thus, in order to calculate the

magnetic susceptibility of an individual site on a lattice, we need to further perturb the system with a

longitudinal field on a single site, yielding the new Hamiltonian

Hrthkzus “ ´
ÿ

xi,jy

Jijσ
z
i σ

z
j ´ hx

ÿ

i

σx
i `

ÿ

k

hkzσ
z
k (4)

where thkzu denotes the vectorized longitudinal field strength with k as the looping index. Fixing k

and setting the longitudinal fields on all other sites to zero (thus thkzu “ t0, . . . , 0, hkz , 0, . . . , 0u), the

second-order perturbation theory gives the definition and the analytical method of calculating the local

susceptibility for the kth spin. Now the unperturbed Hamiltonian is

H 1
0 “ H0 ` H1 “ ´

ÿ

xi,jy

Jijσ
z
i σ

z
j ´ hx

ÿ

i

σx
i . (5)
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and the perturbing Hamiltonian is

H 1
1 “ σz

k (6)

scaled by the longitudinal field strength hkz . The second order perturbative expansion of the ground

energy E0rh
k
zs gives

E0rh
k
zs “ E0r0s ` hkzx0|σz

k|0y ` phkzq
2

ÿ

n

|x0|σz
k|ny|2

E0 ´ En

. (7)

The local susceptibility χkk is defined as the second-order coefficient in the perturbative expansion

χkk “ ´
ÿ

n

|x0|σz
k|ny|

|E0 ´ En|
. (8)

Note that the first order term must always vanish due to spin inversion symmetry.

In numerical study, the Implicitly Restarted Lanczos Method (IRLM) is used to diagonalize

Hamiltonian matrices. It is very good at obtaining the extremal values of the spectrum very quickly.

Thus, we can equate the perturbative expansion with a Taylor series for a numerically feasible way of

calculating the susceptibility. The Taylor expansion of its corresponding lowest eigenenergy E0rthkzus

to second order gives

E0rth
k
zus “ E0rt0us `

ÿ

k

hkz ¨

ˆ

dE0rth
k
zus

dhkz

˙

hk
z“0

`
ÿ

k

hkz
2

2
¨

ˆ

d2E0rth
k
zus

dhkz
2

˙

hk
z“0

. (9)

Fixing k and setting all other longitudinal fields to zero, we obtain the single site susceptibility and

order parameter

E0rthkzus “ E0rt0us ` hkz ¨

ˆ

dE0rth
k
zus

dhkz

˙

hk
z“0

`
hkz

2

2
¨

ˆ

d2E0rthkzus

dhkz
2

˙

hk
z“0

“ E0rt0us `
hkz

2

2
¨

ˆ

d2E0rth
k
zus

dhkz
2

˙

hk
z“0

. (10)

As we have shown above, the first order term is again zero, which gives the formula for calculating the

local susceptibility

χk “
2pE0rh

k
z “ 0s ´ E0rhkzsq

phkzq2
. (11)

We calculate the distribution of local susceptibility for all spin and different sizes as a function

of the transverse field value hx. The result shows a normal distribution at high fields just as expected
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(see Fig. (1)), since the local susceptibility of any individual site i is largely determined by the bond

energy J within its neighborhood, and it is the disorder of the bond energy that gives rise to the normal

distribution of local susceptibility. Notice that the peak of the distribution lies rough at 1{phx{Jq.

Fig. 1. The local susceptibility distribution across sizes 8, 9, 10, 12, and 16 for 100 instances each at

hx{J “ 4.0.

Between hx “ 0.8 and hx “ 4, the spin glass lies in the Griffiths-McCoy (MC) phase where we

begin to see the long tail developing on top of the normal distribution (see Fig. (2)); this is the key

signature of MC phase as the rare regions—regions within the spin glass where the spins are locally

ferromagnetic and the quantum fluctuations vary slowly between up and down state—will produce

some small finite fraction of spins with very large local susceptibilities.
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Fig. 2. The local susceptibility distribution across sizes 8, 9, 10, 12, and 16 for 100 instances each at

hx{J “ 1.851.

As we lower the transverse field and the system is deep Within the spin glass phase hx ă 0.8, the

number of spins with large local susceptibility becomes larger and grows up to be a finite fraction of

the total size of the system (see Fig. (3)).
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Fig. 3. The local susceptibility distribution across sizes 8, 9, 10, 12, and 16 for 100 instances each at

hx{J “ 0.1.

Exactly how this occurs is complex, but a similar phenomenon is seen in the Ising model without

disorder at low fields where the ground state is given by the Schrodinger’s cat state:

|`y “
1

?
2

p| Òy ` | Óyq

|´y “
1

?
2

p| Òy ´ | Óyq

where | Òy and | Óy denote “all up” and “all down” state respectively with their energy difference as

hNx . At the thermodynamic and low-field limit, this energy difference becomes so small that the two

states are nearly-degenerate. To see this, consider the matrix elements xψ1|σz
i |ψy “ 1 for ψ ‰ ψ1 and

0 for ψ “ ψ1 where ψ, ψ1 P t`,´u. Equating the Eq. (4) with the second order perturbative expansion
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of the energy Erhzs tells us that

E0rhz “ 0s ´
1

2
χiiph

k
zq

2
“ x0|H0|0y ` phkzq

2
ÿ

n

x0|σz
i |ny2

Eg ´ En

´
1

2
χiiph

k
zq

2
“ phkzq

2
ÿ

n

|x0|σz
i |ny|2

Eg ´ En

χii “ 2
ÿ

n

|x0|σz
i |ny|2

En ´ Eg

. (12)

For a system of size N and transverse field hx, the ground energy is ´hNx and the first excited energy

is hNx , yielding an energy difference of 2hNx . Now it is not difficult to see that the susceptibility blows

up at low fields because the energy gap is vanishingly small.

We are interested in the statistical quantities of the local susceptibility distribution change as we

vary the transverse field. Here, we present the numerical calculations for the mean, standard deviation

(Figure 4) as well as the lognormal variance (Figure ??) and compare them to the series expansion

result obtained by Singh and Young.

Fig. 4. Mean (left) and standard deviation (right) of local susceptibility as a function of hx for systems

of 8, 9, 10, 12, 16 spins.

We also compute the lognormal variance assuming that the distribution is lognormal whereas in

reality this may well not be the case. Nevertheless, for each hx value, the lognormal variance σ2 is

computed using the formula

σ2
phxq “ log

ˆ

VarrXphxqs

ErXphxq2s
` 1

˙

(13)
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where Xphxq denotes the distribution of χii for given hx value, Er¨ ¨ ¨ s the expectation value, and the

variance VarrXphxqs “ ErXphxq2s ´ ErXphxqs2.

Fig. 5. Lognormal variance of local susceptibility as a function of hx for systems of 8, 9, 10, 12, 16

spins. ??

We also investigate the dependence of critical point—the transverse field value where the spin

glass transitions from the Griffiths phase to spin glass phase—upon the different sizes of the system.

Although technically, phase transitions only occurs in the thermodynamic limit where the functions of

key quantities become singular at the critical point, however, we do observe a more smooth transition

behavior in these smaller systems as well. Here, we note the rough transition region from the Griffiths

phase—characterized by the long tail—the spin glass phase—characterized by migration of the peak

to high local susceptibilities. From the distribution plots, one can roughly see the size dependence of
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the transition region.

Table I. The estimated Griffiths-to-spin-glass transition region with respect to size

size critical region hx
8 0.896
9 0.896
10 0.976
12 1.135
16 1.135

Although the transition regions above is only qualitatively estimated to human error, it can be

argued that the critical region is increasing with respect to the size of the system. In [1], Singh and

Young found in 2d cubic lattices the transition point to be around 2.2 using linked cluster expansion

method, which is approached from below by our study of critical region of increasing sizes.

III Quantities associated with spin glass

In addition to the distribution of local susceptibility, we also calculate various quantities of interest

and make size comparisons. These quantities are ground energy, first-excited energy, entanglement

entropy, global susceptibility (as opposed to local susceptibility), and structure factor. We first briefly

review the formulas. The ground energy and first-excited energy are readily available after diagonal-

ization. The spin glass susceptibility is defined as

χSG “

»

–

ÿ

xi,jy

χ2
ij

fi

fl

disorder

. (14)

where r. . . sdisorder denotes averaging over the disorder in bond configurations. Here χij is the local

susceptibility calculated from applying longitudinal field over two spins i and j, which comes out of

the multivariate Taylor expansion of the ground energy with longitudinal perturbation

E0pthizuq “ E0pthizu “ 0q `

N
ÿ

i

BE0pthizuq

Bhiz
hiz ´

1

2

N
ÿ

i,j

BE2
0pthizuq

BhizBhjz
hizh

j
z

“ E0pthizu “ 0q ´
1

2

N
ÿ

i,j

χijh
i
zh

j
z. (15)
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Conveniently setting all other longitudinal field values to zero besides the ones on site i and site j and

hiz “ hjz “ hz, we can rewrite Eq. (15) as

E0phzq “ E0p0q ´
h2z
2

pχii ` χjj ` 2χijq

χij “
E0p0q ´ E0phzq

h2z
´

1

2
pχii ` χjjq. (16)

The structure factor, also know as spin-spin correlation function, measures how much the spins are

correlated (i.e. if one spin gets flips, how many others are affected), which requires knowing the

wavefunction. It is defined as

SSG “
ÿ

i,j

|Sij|
2 (17)

where Sij ” xψ0|σ
z
i σ

z
j |ψ0y.

In Fig. (6), we plot the first excited energy and ground state energy.

Fig. 6. ground energy (left) and first energy gap (right) with respect to the transverse field value with

errorbars for various system sizes, which is given by the standard deviation of the disorder average.

In Fig. (7), one can see that the transition region of the susceptibility and structure factor grad-

ually approaching 2.2 as the system size scales up. Notably we also see that the disorder standard

deviation starts out as being very large and quickly diminishes as the transition happens. At high

fields, we expect the spin glass susceptibility as well as the structure factor to be essentially size inde-

pendent since the Hamiltonian is dominated by transverse field term.
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Fig. 7. spin glass susceptibility (left) and structure factor (right) with respect to the transverse field

value with errorbars for various system sizes, which is given by the standard deviation of the disorder

average.

In Fig. (8), the disorder-partition averaged entanglement entropy is plotted against the transverse

field strength. At low fields, we can see that the total entanglement entropy scales are mostly size-

independent—they are logp2q plus some additional mixture. The 9 spin system is a bit of an odd case

since there is no even bipartition. At high fields, again we see that entanglement entropy drops down

to zero as the quantum term dominates and the spins become essentially decoupled from each other.

Technically there ought to be an area law—meaning that the entropy should scale as square root of

N (here area is the abstract concept: imagine the 2d volume of the system being N , then the area is

naturally
?
N ), but this effect is not obvious for small size systems.
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Fig. 8. disorder-partition averaged entanglement entropy with respect to the transverse field value with

errorbars for various system sizes, which is given by the standard deviation of the disorder average.

IV Perturbation Theory and Entanglement Entropy

As a side project, we have successfully merged the perturbation theory effective Hamiltonian method

with the algorithm to fast-generate the ground states of the system. The goal is to use the Effec-

tive Hamiltonian method to perturbatively approximate the spatial bipartition-averaged entanglement

entropy at the low field limit for system sizes much larger than what is typically possible for the Lanc-

zos algorithm, thereby enabling us to statistically study the entanglement entropy distribution for a

large number of randomly generated spin glasses. However, the entanglement entropy as given by

this perturbation theory calculation remains somewhat unstable as sometimes we run into issues with

machine precision, In particular, when the two lowest-lying energies are so close to each other that the
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machine confuses the two states for different hx values. This causes the entanglement entropy to fluc-

tuate fiercely between two different curves. Aside from this, the major drawbacks of using effective

Hamiltonian method to study entanglement entropy include 1) the transverse field region in which the

entanglement entropy is well-approximated is very limited, 2) although the algorithm for generating

ground states and calculating the effective Hamiltonian allows for large system sizes, since the size of

the ground manifold scales linearly with the size of the system and fluctuates wildly depending on the

bond configurations, it may happen that the ground manifold is not connected at 4th order perturbation

theory (the order at which our implementation of algorithm currently sits) in which the perturbation

theory is no longer reliable. Thus, in this method, the set of spin glasses that we are able to study is

still limited to those ones with ground manifold small enough for fourth order perturbation theory and

with an energy gap between the ground energy and the first excited energy large enough that does not

challenge machine precision.

remains as a future endeavor to write an algorithm that finds the plateau region of the entangle-

ment entropy and perform disorder averaging. Then we can finally study the size dependence of the

entanglement entropy for sizes larger than what is possible for the Lanczos algorithm at the low-field

limit. Besides the low-field limitations, we should note that there is a size limitation also since the

ground manifold must not be large enough such that it becomes disconnected as fourth order perturba-

tion.

V Perturbation Theory Susceptibility

We also attempted to use perturbation theory to study susceptibility in the low-field limit, but this

attempt turned out to be unsuccessful due to computational cost: the additional added Pauli-z operator

is also needed to be expanded in the perturbation expansion and needs to be re-built for each site.
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