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Abstract
A Hamiltonian formulation of lattice field theories can be approxi-

mated via Hamiltonian truncation. We investigate lattice Hamiltonian
truncation for several low dimensional field theories and develop algo-
rithms for defining and truncating the basis states. The lattice Hamilto-
nian for the Abelian Higgs model is derived, in which the gauge states are
formulated as eigenstates of a rigid rotor.

1 Introduction
Nature has infinite degrees of freedom, so how can we put it on a computer?
Quantum field theory (QFT) asserts that at every spacetime point there is a
quantum mechanical system with a typically infinite dimensional space of states,
and that this spacetime obeys the laws of special relativity. In order to compute
quantities in QFT numerically, we must model the infinite degrees of freedom
of the QFT with the finite degrees of freedom available to a computer. One
solution, originally due to Wilson [1] for studying Quantum Chromodynamics
(QCD), the theory of the strong force, is to replace the infinite, continuous
spacetime with a discrete, finite one, i.e. put the theory on a lattice, typically
with some finite spatial extent. In particular is the Euclidean lattice, in which
time is treated like an additional real dimension, and spacetime is modeled at
R4. The Euclidean lattice is the dominant numerical technique in high energy
physics (HEP). QCD is the main application of lattice methods in HEP, since in
its confined phase QCD becomes non-perturbative; the strongly coupled nature
of the theory means interactions cannot be treated as a small perturbation, thus
numerical methods are required.

Gauge theories are QFTs with fields that have a redundant degree of free-
dom. Gauge theories are ubiquitous; the Standard Model of particle physics is
a gauge theory, several condensed matter systems are described by gauge theo-
ries, and physics beyond the standard model is expected to include novel kinds
of gauge interactions. Despite the success of the Euclidean lattice for studying
aspects of the Standard Model and in condensed matter, it only works when the
Euclidean action is real and positive definite. Topological terms in gauge theo-
ries, such as the QCD theta angle, are complex in a Euclidean theory, thus using
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a Euclidean lattice would have a sign problem [2], thus is extremely difficult, if
not impossible. Gauge theories often become non-perturbative and topological
effects are of great interest in condensed matter, QCD, and beyond Standard
Model physics, thus there is a need for numerical methods suited for topological
terms in gauge theories.

An alternative numerical technique is Hamiltonian truncation (HT); as a
generalization of the variational method in quantum mechanics, one truncates
the Hilbert space at every spacetime point, for example by requiring that a
given state be below a certain energy cutoff, making the Hilbert space finite
dimensional. Using HT on a finite lattice gives a theory with finite degrees of
freedom, which can be directly encoded on a computer. Furthermore, in the
Hamiltonian approach, topological terms are real and act on the Hilbert space
in a simple manner. This means HT is able to study topological terms in generic
gauge theories.

To calculate a truncated Hamiltonian, we start with a local Hamiltonian op-
erator, which is a polynomial of creation and annihilation operators. In HT one
must explicitly enumerate all allowed states of the Hilbert space, and calculate
the truncated Hamiltonian matrix elements in that basis. The most impor-
tant states are those with the greatest weights in the Hamiltonian eigenvectors.
Computational complexity scales with the number of states, so it is crucial to
keep only the most important states.

In this note we review some aspect of a toy model for HT, the Abelian
Higgs model, and explicitly construct its Hamiltonian in terms of creation and
annihilation operators. We used this method and analogous ones to generate a
finite, truncated basis of states to approximate the Hamiltonian. The results of
the initial work on the Abelian Higgs model were inconclusive, thus we restrict
this note to only a theoretical overview of the Abelian Higgs model and its
lattice Hamiltonian.

2 Abelian Higgs Model
The Schwinger model is a 1+1 dimensional theory of Quantum Electrodynamics
and is a toy model of 3+1 Quantum Chromodynamics as it exhibits confine-
ment of fermions. We seek to calculate the Schwinger model via Hamiltonian
truncation on the lattice. To understand lattice gauge theories in Hamiltonian
truncation, we begin with the Abelian Higgs model, which is a theory of com-
plex scalars with a U(1) gauge group. The Abelian Higgs model demonstrates a
confinement stage, thus it resembles features of QCD, as well as exhibits many
of the interesting features of a gauge theory, such as a spontaneously broken
phase generated by topological effects [3].

We lay out some of the theoretical framework needed to perform Hamiltonian
truncation on the Abelian Higgs model, including the gauge transformations and
defining gauge fields on the lattice, then states used to construct the Hamiltonian
and an algorithm for doing so, and finally the Abelian Higgs hamiltonian defined
in terms of lattice operators.
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2.1 Gauge Transformations
In continuous space, gauge transformations act on a single point of spacetime.
On the lattice we have a complex scalar �x = ⇢x + i�x, where ⇢ and � are real
scalars and x denotes a position on the lattice. �x transforms as

�x ! e
i✓x�x, (1)

where ✓x is a position dependent phase associated with the U(1) transformation.
In order to construct gauge invariant operators, we associate a link variable
Ux,j to the connection between lattice sites at x and x ± j. We will work in
temporal gauge where for the gauge field Aµ, A0 = 0. The gauge field will be
non-dynamical, though the equations of motion will still constrain the Hilbert
space. The links transform under the gauge group as

Ux,j ! e
i✓x Ux,j e

�i✓x+j = e
i(✓x�✓x+j) Ux,j , (2)

since the gauge group is Abelian.

2.2 Hamiltonian
2.2.1 Pure Gauge
In the pure gauge sector the Hamiltonian with zero potential is

H0 =
1

2
I ✓̇

2 =
1

2
I

✓
�@2

@✓2

◆
(3)

where there is an implicit sum over lattice sites.
The eigenstates are those of a rigid rotor with a moment of inertia I. For a

state with angular momentum ` we write

 `(✓x) = e
i`✓x ⌘ |`xi . (4)

Where `x is the link quantum number at position x. The link quantum numbers
are integers that label rotor eigenstates. Eventually we will interpret |`xi as `
units of flux (quanta of the gauge field) flowing from x to x+1, connecting the
two lattice sites. Likewise, |�`xi can be thought of as flux flowing from x + 1
to x.

The eigenenergies are given by

E`(✓) =
1

2
I`

2
. (5)

The creation operator ↵† is defined by

↵
† |`i = |`+ 1i ,
↵ |`i = |`� 1i ,

(6)

from which it follows that ↵�1 = ↵
†.
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Gauge invariant states are constructed from closed loops of links, however,
as then the gauge indices are fully contracted. However, in 1+1 closed loops
are necessarily made of overlapping links going in the ‘opposite direction’. Since
the link variables are unitary, being in the U(1) gauge group, a link going from
the site x to x + j, composed with another link from x + j to x gives the
identity, namely Ux,jUx,�j = Ux,jU

�1
x,j = 1. Thus there are no non-trivial gauge

invariant states in the theory, thus it is non-dynamical. This is saying that in
1 + 1 dimensions, the photon is not a propagating degree of freedom, rather,
only a term in the Hamiltonian’s potential.

2.2.2 Complex Scalar
We now turn to a theory with a scalar degree of freedom coupled to the gauge
field. The gauge invariant Hamiltonian with a complex scalar is

H =
1

2

X

x

|�̇x|2 + |D�x|2 +m
2|�x|2 +

1

2
I ✓̇x

2
. (7)

The lattice covariant derivative is

D�x =
Ux,1 �x+1 � �x

a
, (8)

where a is the lattice spacing, which for now will taken to be 1. Ux,1 here keeps
track of how the gauge field affects the dynamics of �x, and Eq [8] particularly
is a difference operator that is covariant under gauge transformations, such that
the entire Hamiltonian may be invariant. In following sections we will include
�x into the full Abelian Higgs Hamiltonian.

2.3 States
The space of states is composed of excitations of scalar particles and antiparticles
at lattice sites, and modes of the gauge field at the links. We define the scalar
operators for � as

�̂x |0i =
1p
2m

�
ax + b

†
x

�
|0i =

1p
2m

|�xi , (9)

where ax and b
†
x respectively annihilate an antiparticle and create a particle,

and m is the mass term in the potential of � field, correspondingly it is the
mass of a � particle, being a local excitation of its field.

Gauge states have the form

|`i =
(�
↵
†�` |0i ` > 0

(↵)` |0i ` < 0.
(10)

An eigenstate of the Hamiltonian defined in (7) will be a gauge invariant
combination of a†, b†, ↵†, and ↵ acting on the vacuum. Note that since the link
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variables are eigenstates of a rotor, their quantum numbers can be negative,
namely ↵ |0i is nonzero. For a state with an equal number of particles and
antiparticles, whether the modes for the link variables form a gauge invariant
state will be determined by the distribution of particles and antiparticles. For
example, the state

�
†
x �x+1 ↵x |0i = |�x;�`x; �̄x+1i

= |�x; �̄x+1i
(11)

is gauge invariant. This can be understood as there being flux flowing from the
� at x+ 1 to the � at x; the link quantum number at x is `x, it goes from x to
x+ 1 and must be negative to denote flux leaving x+ 1 and entering at x.

We expect the energy of this state to be the sum of the frequencies of
the scalar excitations, which form independent harmonic oscillators barring the
gauge interactions, plus the energy of the links.

The basis for the Hamiltonian will still be specified just by the number of
�x at a given lattice site, although the energy will be different. The energy of
a state nonetheless is the eigenvalue of the Hamiltonian, so the question is how
to write the Hamiltonian in a basis without gauge states, which still captures
the gauge contributions to the potential. The algorithm to calculate the energy
of the lines of flux between lattice sites would go as follows:

1. Define a state from any charge neutral combination of scalars (equal num-
ber of a and b). This will be expressed as creation and annihilation oper-
ators.

2. Associate each site with a total charge, which will be calculated as
Qx = nparticles � nanti-particles.

3. Determine the link quantum number at a given site (the link at x is the
one between x and x+ 1) by `x = Qx+1 �Qx.

4. The energy of the state is the energy as calculated by acting with the
gauge free Hamiltonian, plus

P
x

1
2I`

2
x.

This will work for calculating the energy of the state, but it only works for
eigenstates of the Hamiltonian. The goal is to perform Hamiltonian truncation,
so we must be able to calculate matrix elements of H generally. One idea is
since the link variables are determined by the distributions of scalars, we could
include an interaction term

Hi =
X

x

1

2
I ˆ̀2x,

ˆ̀= Q̂x+1 � Q̂x,

Q̂x = n̂b � n̂a,

n̂b,x = b
†
xbx,

n̂a,x = a
†
xax.

(12)

This is the same procedure as above, except instead of explicitly counting the
charge of a state, we insert number operators into the Hamiltonian.
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2.4 Abelian Higgs Hamiltonian
The Hamiltonian in the 1D abelian Higgs model is

H = Hgauge +Hscalar,

= Hgauge +H0,scalar + Vscalar,
(13)

where

Hgauge = Evacuum +
X

x

1

2
g
2
E

2
x � g

2
✓

2⇡
Ex,

H0,scalar =
X

x

|�̇x|2 +m
2|�x|2,

Vscalar =
X

x

|Ux�x+1 � �x|2 + (m2 �m
2)|�x|2 +

�

8
|�x|4.

The vacuum energy Evacuum = �L
g2✓2

8⇡2 , L is the size of the lattice, and g is the
gauge coupling.

�x is a complex scalar at the lattice site x given by

�x =
1p
2m

�
bx + a

†
x

�
,

�̇x =

r
m

2

�
bx � a

†
x

�
,

(14)

where a
†
x, b

†
x are creation operators for � particles and antiparticles, respectively.

The link variable Ux is the gauge connection between lattice sites x and x+ 1,
and can be thought of as a rigid rotor where

Ux = e
iAx , (15)

where Ax is the photon field.
Ex is the electric field and is given by

Ex =
@L
@Ȧx

=
1

2
g
2
Ȧx +

✓

2⇡
. (16)

2.4.1 Scalar Hamiltonian
We can write the Hamiltonian of the scalar sector as a sum of monomials:
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H0,x = m

✓
X1 + Y1 +

1

2

◆

X

x

|Ux�x+1 � �x|2 =
1

m

X

x

X1 + Y1 + Z1 + Z
†
1 + 1

� 1

2
(G1 +G2 +G3 +G4 + h.c.) ,

(m2 �m
2)|�x|2 =

m
2 �m

2

2m
(X1 + Y1 + Z1 + Z

†
1 + 1),

�

8
|�x|4 =

�

32
(3X1 + 3Y1 +X2 + Y2 + 3Z3

+ [3Z1 + Z2 + 2Z4 + 2Z5 + h.c.]),

(17)

where

X1 = a
†
xax Z1 = axbx G1 = Uxa

†
xax+1

X2 = a
†
xa

†
xaxax Z2 = axaxbxbx G2 = Uxb

†
x+1bx

Y1 = b
†
xbx Z3 = a

†
xb

†
xaxbx G3 = Uxax+1bx+1

Y2 = b
†
xb

†
xbxbx Z4 = a

†
xaxaxbx G4 = U

�1
x axbx+1

Z5 = b
†
xaxbxbx

The full Hamiltonian is then

H =
X

x

✓
m

2 +m
2 + 2

2m
+

3�

32

◆
(X1 + Y1) +

�

32
(X2 + Y2)

+

✓
m

2 �m
2 + 2

2m
+

3�

32

◆
Z1 +

3�

32
Z3 +

�

32
(Z2 + 2Z4 + 2Z5 + h.c.)

�1

2
(G1 +G2 +G3 +G4)

+
m

2 + 2

m
.

(18)

2.4.2 g ! 0 limit
The Lagrangian for the fields used in 13 is

L =
1

2g2
F

2
01 +

✓

2⇡
F01, (19)

where F01 = Ȧx which is singular for g ! 0. We can avoid this by rescaling the
field Ãx = gAx. The Hamiltonian in the pure gauge sector becomes

Hgauge = Evacuum +
X

x

1

2
Ẽ

2
x � g✓

2⇡
Ẽx, (20)
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where Ẽx = ˙̃
Ax +

g✓
2⇡ . The electric field still acts as as a derivative with respect

to the rescaled photon field, thus the eigenstates of the rescaled Hamiltonian
are

 s(Ã) =
Y

x

1p
2⇡

e
igsxÃx , (21)

where sx is the number of photon excitations at x. The rescaled connection acts
as

Ux |. . . , sx, . . .i = e
igsxÃx

Y

x

1p
2⇡

e
igsxÃx = |. . . , sx + 1, . . .i , (22)

where is simply a ladder operator, as before the rescaling. We find that the
eigenvalues are unaffected by the rescaling.

3 Conclusion
The lattice Hamiltonian defined the theory, then in order to perform Hamil-
tonian truncation we must express the Hamiltonian in terms of its lattice de-
grees of freedom. We give the lattice Hamiltonian for a massive complex scalar
and massless gauge field in a 1+1 dimensional Abelian Higgs theory in terms
of creation and annihilation operators. Current and future work implement
Hamiltonian truncation to calculate ground state energies and other physical
quantities, and tests for the convergence and efficiency thereof. A truncated ba-
sis can be used to construct an approximate Hamiltonian. This can be used to
approximate the spectrum of the theory, and this approximation becomes more
accurate as the basis grows larger. A truncated basis grows rapidly with the
parameters used to truncate it, here the number of scalar and link excitations,
and it is pivotal to keep only the states which contribute most substantially to
the Hamiltonian.
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