
Optimizing Image Processing Algorithms to Explore the Stability of a Granular System

Marissa M. Singh
Physics Department, University of California Davis

Granular material, such as sand and dirt, is a common type of material that is seemingly easy to describe.
In reality, granular material behaves in ways unexplainable using conventional physics or mathematics. To
efficiently contribute to the research of granular materials, knowing how to employ new technology can greatly
improve accuracy of analysis. This research focuses on optimizing algorithms used to explore the stability of
a particular granular system. Mainly implementing methods from Open CV, image processing algorithms were
modernized to improve the efficiency of a two-part Python program that analyzes the avalanches of granular
material.

I. INTRODUCTION

In order to explore the question: “What makes a granular
pile more or less stable?”, the question that must first be ex-
plored is: “What is the best way to explore the stability of a
granular system?”

A granular system is a collection of distinct macroscopic
particles. Although these systems are simple to describe, they
are extremely complicated to study as they exhibit complex
behavior. This is because granular materials hold characteris-
tics of solids, liquids, and sometimes gases. A pile of sand for
instance has the ability to flow, however it also has the ability
to stabilize and remain stationary. What makes them hard to
study is the way force runs through the pile. When a force is
applied to the system, it spreads through the pile in a chain-
like manner. These unique chains are called force chains [1].
Because these force chains are unpredictable and don’t affect
every ball in the pile, we are forced to look at each ball in-
dividually. Once you begin to consider other forces, such as
frictional force, the system becomes even more challenging
to study. Some scientists have turned to conventional statis-
tical mechanics to try and analyze these systems. However,
the particles are macroscopic; temperature plays no signifi-
cant role on the motion of the particles and the particles have
inelastic collisions. As a result, the energy and temperature
of the system are not well defined, and conventional statisti-
cal mechanics would have to be modified to apply. In order
to contribute to the study of this research, Professor Rena J.
Zieve has set out to explore the stability of granular systems
in hopes to understand more about granular material as well
as to create guidelines for future research.

The granular system that we are exploring resides in a con-
tainer that consists of two square sheets of Plexiglas, red con-
struction paper, a square of metal aluminum that is 1/8 of an
inch thick with a hole cut out in the center, and white shelf pa-
per over the aluminum. Inside the aluminum hole is the granu-
lar material [2][3]. The reason the metal is so thin is so that we
can model a 2D granular system and have the balls confined
to a single layer (Figure 1). We are currently working with
two structures: hexagons that are painted green and made up
of seven ball bearings welded together, and doubles that are
left silver and made up of two ball bearings welded together.
The entire apparatus is rotated about its center using a stepper
motor that receives pulses from a wave function generator. As
the system rotates, we observe an avalanche. The speed of ro-

FIG. 1: This is the physical apparatus that contains the granular sys-
tem of interest. The granular material consists of silver dimers and
green hexagons. All material is confined to a single layer, and the
entire apparatus is rotated about its center.

tation is slow so that we can observe each avalanche as an in-
dividual event. With the current speed, it takes approximately
30 minutes for the entire apparatus to make a complete revo-
lution. Our goal is to explore how the exact arrangement of
the balls makes the pile more or less stable. More specifi-
cally, we hope to analyze 10,000 avalanches, organize them
by angle of collapse, and create a heat map of the hex-center
locations for each angle. The way we plan to achieve this is
through data analysis and data acquisition programs. Because
this project has been going on for many years, the programs
were first written in IDL, translated to Python2, and I caught it
in the middle of being translated to Python3. My role through-
out this process has largely been to finish translating, debug,
modernize, and optimize these programs.

II. DATA ACQUISITION

The Data Acquisition program acquires data to be later an-
alyzed by the main analysis program. It is a threaded program
that functions in the following manner: (1) Initializes through
a setup process that finds the border of the drum (2) Contin-
uously reads in images and finds the angle that the balls are
heaped at (3) Looks at the last four documented angles for
a net decrease in angle value – if there is a decrease, this
means an avalanche has occurred and the program will take
45 frames before the trigger point, 55 frames after, and send



2

this over to the avalanche thread (4) The avalanche thread fur-
ther analyzes the 100 frames to find the start and end frame
of an avalanche – relevant data is saved. When I first started
working with this program, it was not able to run and needed
to be modernized.

The first algorithm I changed was the method for finding
the border of the drum. Originally, the program scanned
across the image looking for derivative differences in pixel
color. This process was highly contingent on lighting and be-
cause our entire setup has been moved from room to room
over the years, the lighting we work with is not consistent.
To resolve this issue, I turned to an image processing library
called Open CV. I first took the image and applied a Gaus-
sian Blur to the image using cv2.GaussianBlur. I then found
the edges of the image using cv2.CannyEdges (Figure 2). Be-
cause the image is blurred, a lot of the noise in the image is
removed, and I’m able to get a nice outline of the border of
the drum. The Canny Edges method does not store any coor-
dinate information about the edges it finds, so to get the coor-
dinates of the drum, I found the contours of the image using
cv2.FindContours. This method gives you all the contours of
a particular image, so to find the exact contour of the drum, I
iterated through the contours looking for the contour with the
largest length. The longest contour is always that of the circle,
so I’m able to get the red trace of the border seen in Figure 3.

FIG. 2: This is what the image looks like when the methods Gaussian
Blur and Canny Edges are applied. The border of the drum is very
clear cut, and all other noise is blurred out.

This is an efficient method for finding the border of the
drum because lighting no longer affects the accuracy of the
trace. Furthermore, the trace is accurate to the exact pixel –
this is extremely useful for our research because the border of
the drum later determines where the program will look when
scanning for balls. If the drum is off by a pixel, it can cut
off some parts of the balls on the edge of the drum, and those
balls will be missed in the scan.

The second algorithm I changed was the methods for find-
ing the edge of the balls. Similar to the previous algorithm,
the program originally scanned down the image looking for

FIG. 3: In this image I overlaid the coordinates of the border against
the original frame. The coordinates match up perfectly with the bor-
der of the drum, confirming that the new algorithm is precise and
accurate.

differences in pixel color. I changed it to use methods from
Open CV. The program first finds the edges of the image.
In this case, I did not blur the image so that the pile of the
balls would not be mistaken for noise. Instead I directly used
cv2.CannyEdges to produce the clear cut image in black and
white seen in Figure 4. Because the image is in black and
white, the pixel array is in terms of 0s and 255s – 0 corre-
sponding with black pixels and 255 corresponding with white
pixels. Instead of scanning the image looking for differences
in pixel color, I scanned the image looking for white pixels.
The iterations begin at the top most point of the drum. From
this point, the algorithm scans down the pixel array until it
hits a 255. Once it hits a 255, the coordinate of the white pixel
is logged into a list. It then steps up 15 pixels, to the left 1
pixel, and scans down again until it hits a 255. This process
is repeated up until the distance between the last point logged
into the list and the center of the drum is equal to the radius of
the drum. This ensures that the program doesn’t run outside
of the drum looking for white pixels. Once the scan finds the
left half of the edge of the balls, it repeats the same process to
find the right half.

Although this process is a bit more accurate than the previ-
ous algorithm, there is still room for improvement. Because
we are now looking for single white pixels, it is possible for
the trace to fall through the cracks in between the balls. This
results in random low logged points. Although this doesn’t
severely affect the ball scan as it is only a single low logged
point, it can still be fixed. Another fault is that sometimes the
trace cuts through balls as seen at the top of Figure 5. I believe
that this can be resolved by altering the image of the edges to
see the balls as a collective white chunk instead of individual
balls. This would allow the scan to work as we had imagined,
and accuracy would be improved.

Once these two algorithms were altered, the data acquisi-
tion program was running. Our next task was to create an



3

FIG. 4: This is what the image looks like when the method Canny
Edges is applied without first applying the Gaussian Blur. Most of
the noise is back in the picture, however, where the balls are heaped
is clearly visible in white. This allows the new algorithm to find the
edge of the balls by only looking for white pixels.

FIG. 5: In this image I overlaid the coordinates of the ball border
trace against the original frame. The trace is fairly accurate, but it
still cuts out a few balls. The cut out balls can be seen at the very top
of the trace.

algorithm for identifying the starting and ending frame of an
avalanche. From observing many avalanches, something that
we noticed is that there is a rapid increase in the angle data
just as the avalanche collapses. Recall that for each avalanche,
there are 100 frames that are further analyzed to find the start-
ing and ending frames of an avalanche. Each frame is run
through the ball border trace algorithm described above, and
the trace of the edge of the balls is converted into a line. The
slope of that line is converted to Radians. For a particular

avalanche, we are able to graph the progression of angle mea-
surements over an avalanche period. This can be seen in Fig-
ure 6.

FIG. 6: This graph compares the angle measurements for 6 different
avalanches. Each point represents the angle the balls are heaped at
for a certain frame. The first thing to note here is how different each
avalanche is. All avalanches above reach different max angles before
collapsing to different ending angles. The duration of collapse is sim-
ilar amongst the avalanches, but the intensity of collapse differs. The
second thing to note is the behavior of the angle measurements just
before collapse. Each avalanche has a small jump in angle measure-
ment just before collapse. In that hump is where the highest angle
measurement is, and 20 frames before that point is where we place
the beginning frame for the start of an avalanche.

This is because during an avalanche, the upper heap col-
lapses to the bottom. When the program finds the angles of
each frame taken during an avalanche, the moving upper heap
is included in the angle measurements. As a result, the angle
rapidly increases with the max angle signifying the start of
collapse. This means that the frame a couple of seconds be-
fore the max angle is a still frame that best represents the start
of an avalanche. To find this frame, we first created a linear fit
of the first 20 angles in the list of avalanche angles being an-
alyzed in the avalanche class. The slope of the fit will remain
positive until the avalanche starts to collapse. Because we are
fitting 20 angles at a time, the slope starts to decrease when
the first half of the angles begin dropping to lower values. We
move the window of 20 angles over 1 frame until the slope
of the fit is less than a certain threshold. After experimenting
with many numbers, we found -0.0035 to be the best thresh-
old number that results in a fit that is well aligned with the
avalanche. This slope represents the window of frames mid-
way into the start of an avalanche. At this point, we’re able to
find the max angle out of the 20 angles. This angle tends to
be the highest angle just before collapse. From the max angle,
we look back a couple of seconds to find the still frame just
before collapse. A couple of seconds corresponds to approx-
imately 20 frames, so we select this frame and mark it as the
starting frame.



4

FIG. 7: This graph shows what the linear fit of 20 frames looks like
just as it passes the threshold of -0.0035. The max angle is easily
found because the threshold ensures that the window of angles in
the fit includes the jump of angle measurements just before collapse.
The max angle is highlighted in red, and 20 frames before that, the
beginning frame is highlighted in yellow.

We continue moving the window of angles forward until
the slope of the fit becomes greater than -0.0004. We look
20 frames after this point and mark it as the ending frame.
This algorithm works great for the standard avalanche, how-
ever, not every avalanche is perfect. Sometimes an avalanche
has a small initial tumble, and is immediately followed by a
larger tumble. In avalanches like these, there is a hump in the
avalanche angle data. Using the current method for finding the
ending frame would result in the ending frame being marked
at the middle of the second tumble. A frame pulled from the
middle of a tumble tends to be blurry and difficult to analyze
(Figure 8). We are currently looking to implement a new al-
gorithm that looks at the potential ending frame, takes a fit of
the all the angles between 5 frames before the potential end
and 5 frames after. It would then move the smaller window
of 10 angles forward until the slope of the new fit is positive
(Figure 9).

III. MAIN ANALYSIS PROGRAM

The main analysis program currently analyzes the starting
frames of an avalanche and outputs all hex-center locations
for a particular frame. This program works in the following
manner: (1) Finds the border of the drum (2) Traces the edge
of the balls (3) Scans for all ball center locations (4) Finds
the balls directly surrounding a ball (nearest neighbors) and
the balls surrounding the nearest neighbors of the ball (second
nearest neighbors) for each ball (5) Determines which balls
are green or silver through a neural network (6) All informa-
tion is sent to a final module that finds hex-center locations
with the help of 5 neural networks based on color and posi-
tion (7) Program outputs all hex-center locations. After work-

FIG. 8: This image shows the current algorithm for the choosing
the ending frame of an avalanche. It currently moves the window
of angles to the right until the slope of the angles surpasses -0.0004.
20 frames after this point is where the ending frame is marked. In
the avalanche above, there were two tumbles during collapse. The
current algorithm places the ending frame, highlighted in blue, in the
middle of the second tumble. This results in a blurry ending frame
that is difficult to analyze.

FIG. 9: This image shows the new algorithm that we are working to
implement. This algorithm follows the original algorithm up to the
point where the ending frame is selected. Once the slope surpasses
-0.0004, the algorithm examines the potential ending point by creat-
ing a smaller fit surrounding the ending point. It does not mark the
ending point until the slope of the smaller fit is positive. The new
ending point is highlighted in blue, and we can see that it accurately
marks the end of the avalanche.

ing through many bugs, we got the program running, however,
it was only finding two hexagons in the pile. One of the main
things that got the program working up to par was an algo-
rithmic change in the module that finds the neighbors of each
ball. This module operates by using a Delaunay triangulation
to find the neighbors of each ball. It first locates the centers



5

of each ball and marks those with purple dots. It then draws
green lines connecting each ball center as seen in the left im-
age of Figure 10. Perpendicular bisectors are drawn through
each green line, best seen in right image of Figure 10 with the
focus on the upper left ball. The orange vertices mark where
the perpendicular bisectors intersect.

FIG. 10: This is a simplified visual of the Delaunay Triangulation
process. The centers of each ball are first connected by the green
lines. Perpendicular bisectors are drawn through each green line,
depicted in orange. The nearest neighbors of a particular ball are the
ball centers that can be reached by crossing exactly one orange line.
This process is shown for the top left group of balls above.

For a particular ball, the nearest neighbors are the ball cen-
ters that can be reached by crossing exactly one orange line.
This process was working great at the center of the pile, how-
ever, at the edge of the pile, the orange vertices were extending
extremely far from the pile (Figure 11).

FIG. 11: This is what the Delaunay Triangulation process looks like
on a real image of the heaped granular balls. The purple vertices rep-
resent the center of each ball, and the orange vertices represent the
nearest neighbors of each ball. At the edge of the balls, the algorithm
places orange vertices far into the center of the drum where no balls
are located. This results in the program incorrectly making differ-
ent hexagons second nearest neighbors of each other. The program
would then fail as two hexagons cannot be second nearest neighbors.

This was causing the balls on the edge to have very long
lists of neighbors, mostly comprised of balls that were not
neighboring balls. The reason this resulted in many issues is

because two hexagons cannot be nearest neighbors or second
nearest neighbors of each other. The final module uses this
information and throws out any hexagons that are too close
together. With the error at the border, the final module was
throwing out a large amount of real hexagons. We resolved
this issue by creating a new module that layered fake balls
along the edge of the real balls. This allowed the Delaunay
Triangulation to function as it normally did, however, instead
of attaching erroneous balls to the real balls, it attached them
to the fake balls. At the end of the process, we swept out the
fake balls, and the program was able to function smoothly.
This minor change got the program to find 84.194% of the
hexagons in the pile. Of the hexagons it found, 99.240% were
correctly identified. Something important to note: these num-
bers are results from the program analyzing the image the neu-
ral networks were trained on. This means that these will be
the highest amount and most accurate hexagons the program
finds, as the neural networks are most familiar with the spe-
cific variation of hexagon locations in the training image.

IV. RESULTS AND DISCUSSION

With the new improvements in place, we were able to run
the data acquisition program and read in 2600 avalanches.
A noticeable difference from the previous algorithms is the
speed at which the avalanche thread analyzes an avalanche.
Previously, there were issues with the camera buffer filling.
When this happened, all threads other than the avalanche
thread had to be halted - this means that the camera would
stop reading in new frames. Now, the avalanche thread an-
alyzes the 100 frames tied to an avalanche within seconds.
There is no longer a need to halt the other threads, and we’re
able to fully read in every single frame that the camera cap-
tures. We are still unsure if this improvement in speed is a
result of the newer algorithms or the newer computer that we
are now operating on.

Because the data analysis program used the same algo-
rithms as the data acquisition program, we were able to imple-
ment the new methods in the analysis. Before we could really
see if they improved things, we first had to retrain the neural
networks. Since 2013, the neural networks had been trained
on images from the older setup. All algorithmic changes be-
tween then and now were made to fit the old lighting and
cleaner container. Once the neural networks were retrained
on a current image, naturally the older algorithms failed. Af-
ter implementing the new algorithms, the program was able
to find 82.0% of the hexagons in the pile. Of the hexagons
it found, 95.5% were correctly identified. Again, these num-
bers are from running the analysis program on the image that
the neural networks were trained on. These numbers are very
close to the older algorithms, however, they are not as great.
This is not entirely the fault of the new algorithms, but rather
both the new algorithms and other algorithms that have not yet
been optimized. The following issues are the most pressing:



6

Balls found outside of the border

One of the issues with the old algorithms that we aimed to
fix is that the program would find balls outside of the drum.
The program classifies balls by looking for the bright spot in
a ball and marking that as the center. The older method for
finding the border of the drum would include some parts of
the white container inside the scan for ball center locations.
As a result, the program would see the chunk of white and
classify some of the chunk as ball centers. The new method
for finding the border of the drum partly fixes this as the new
trace is accurate to the exact pixel. Because it is accurate to
the exact pixel, the scan sometimes has trouble differentiating
exactly when the pixel changes from being a pixel on the bor-
der(black) to being a pixel outside of the border(white). This
is because when you zoom in on the image, the border of the
drum blends a bit into white, so some border pixels are grey.
As a result, the trace of the border will have small vertical
lines to cover the blend. In order for the scan to work, we
have to tell the algorithm to ignore a certain number of pixels
at the top of the vertical line so that the entire border is in-
cluded in the trace. This works perfect for some images, but
for others, some white is included in the trace and we end up
finding balls outside of the drum.

Balls found outside of the trace

Another issue was that the old algorithm for finding the
trace of the edge of the balls would miss balls at the edge
of the pile. This is different from the last issue because this
is not dealing with the border algorithm. This algorithmic is-
sue comes from the scan where the code is looking for white
pixels to classify the edge of the balls inside the drum. The
current algorithm has just a bit more accuracy than the pre-
vious algorithm as most balls inside the pile are being found,
however, it is now finding a few balls outside of the trace. Al-
though this is not significantly affecting how many hexagons
are found, it can still be improved. Because most balls inside
of the pile are being found, it is up to the remaining algo-
rithms to determine which balls are hexagons and which are
not. Hence, the accuracy of the program will improve once
the remaining algorithms are optimized.

When images other than the training image are ran through
the data analysis program, it finds around 60-80% of the
hexagons in the drum. We are not yet able to determine how
accurate the hexagons are because in order to get a percentage
of accuracy, we have to manually identify all hexagon loca-
tions for an image. This takes a lot of time, so we plan to
manually locate hexagons for five or more images and gauge
the accuracy with those percentages. There are however some
images that are not able to get through the analysis. This is
because the module that finds the trace of the edge of the balls
occasionally fails. With an incomplete trace of the edge of
the balls, the program isn’t able to run the algorithm that finds
all ball center locations, so it halts the analysis. I believe that
the module for finding the trace fails because in some images,
there are enough cracks in the pile for the scan to completely

run through the pile and miss white pixels. Recall that this
module documents coordinates of the trace by scanning the
image for white pixels. Ideas for fixing this issue are detailed
in the following section.

V. CONCLUSION AND FUTURE WORK

Although much progress has been made, there is still much
to be done. All algorithmic changes have accomplished one
thing: they have modernized and compressed the older code.
There was originally tons of folders, excess lines of code, and
different modules overlaid in single files. The moderniza-
tion of both programs has brought a lot of organization to the
project, and it will now be easier for someone else to pick this
up and take off running. As mentioned above, there are still
pressing issues that need to be resolved before we can draw
significant conclusions about the stability of granular piles. I
believe that the border algorithm can either be improved with
a better camera, or adjustments to the current algorithm. A
better camera may help eliminate the grey blend of pixels
that is seen at the border of drum. Other adjustments could
be combining the old algorithm with the new algorithm. We
could start off with the new algorithm and first obtain the coor-
dinates for the border of the drum. From there, new code can
be implemented to closely examine any small vertical lines in
the border. The old code would be used to look for pixel color
differences with specialized threshold values. Wherever the
switch from inside to outside of the border is detected would
be the new point logged in for the border - this would over-
ride the vertical line. Another resolution could be counting
the pixels in a vertical line, finding the median, and logging
that point to replace the vertical line. For the second issue of
finding balls outside of the trace of the edge of the balls inside
the drum, applying a special filter to the image may help. Cur-
rently there’s issues where the algorithm can run through the
cracks between the balls, resulting in low logged points for
the edge. I believe this same issue is causing balls to be found
outside of the edge. With a special filter applied to the image,
we could alter the image so that the heap of balls becomes a
collective clump of white. This would make it very clear to
the algorithm where the edge is at, and we would end up with
a clearly defined trace of the edge.

Outside of the current algorithmic issues, it would be in-
teresting to explore how changing the colors of the granular
material would affect the analysis. The silver and green col-
ors of the balls can sometimes be difficult to differentiate de-
pending on lighting. Painting the balls to drastically differ-
ent colors, such as bright purple and bright yellow, may help
other parts of the program work better. Painting the center
of each hexagon a different color could also greatly assist the
program’s accuracy.

With the code now fully translated and modernized, I be-
lieve that we are much closer to reaching our end goal of an-
alyzing the stability of our particular granular system. Once
things are working with optimal accuracy, this research will
be able to contribute to the mass of research being done on
establishing the behavior of granular material.



7

VI. ACKNOWLEDGEMENTS

I would like to thank Professor Rena J. Zieve for welcom-
ing me into the world of granular material. I have learned
a vast amount about how to analyze complex systems under

her instruction, and for that, I am very thankful. I would also
like to thank the University of California Davis for running
the Research Experiences for Undergraduates Program, and
the National Science Foundation for funding this incredible
journey.

[1] Qicheng Sun, Feng Jin, Jiangui Liu and Guohua Zhang, “Un-
derstanding Force Chains in Dense Granular Materials,” Inter-
national Journal of Modern Physics B Vol. 24, No. 29, 5743
(2010).

[2] A.G. Swartz, J.B. Kalmbach, J. Olson, and R.J.
Zieve,“Segregation and stability of a binary granular heap,”

Granular Matter Vol. 11, No. 3, 185 (2009).
[3] J. Olson, M. Priester, J. Luo, S. Chopra, and R.J. Zieve, “Packing

fractions and maximum angles of stability of granular materials,”
Physical Review E Vol. 72, No. 3, 031302 (2005).


