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Quantum state transfer (QST) through coupled cavity arrays (CCAs) has become a popular
research topic. Recently, it was discovered that perfect QST could be achieved by tuning the
parameters of a CCA. We investigated the effect of defects and emitters of the performance of
CCAs that have been tuned for perfect QST. Data was generated with the Tavis-Cummings-Hubbard
model and t-dependent perfect diagonalization. We find that single defects localize eigenvectors and
create traps for photons. We also find that both disorder in a CCA’s parameters as well as inserting
emitters ruins the perfect QST for a tuned CCA.

I. INTRODUCTION

Quantum state transfer (QST) involves moving a quan-
tum state from some location A to another location B
[1, 2]. QST is difficult to achieve since quantum parti-
cles typically like to spread their wave functions spatially
instead of localizing them at points. To force a wave
function to travel between two points, special devices
must be engineered which manipulate the wave function
in just the right way [1–3]. Improving QST is an im-
portant goal of quantum information processing research
[1, 2, 4]. Quantum computers will not be possible un-
til a reliable method of QST has been developed [1, 2].
Many QST methods are under development, including
optical photons, phonon modes for trapped ions, and spin
chains [3, 5]. Recently, QST through coupled cavity ar-
rays (CCAs) has shown significant promise [6].

A CCA is an array of optical cavities which have been
placed in a dielectric material like silicon and are coupled
through waveguides [3, 6, 7]. Photons can be trapped
in these cavities and hop between adjacent cavities. A
method for perfect QST in CCAs of any length has al-
ready been discovered [3, 7]. In addition, these cavities
can contain two level systems known as emitters. These
emitters can absorb a photon and then re-emit it. An
emitter can only absorb one photon at a time, which gives
rise to the photon blockade effect. CCAs are founded in
cavity quantum electrodynamics, but they have also be-
come an important topic of research in condensed matter
physics [3, 6].

When a photon is in a CCA, its wave function can
spread out between the cavities. The use of emitters in
CCAs allows for the wave function to spread into the
emitters too. When a photon has its wave function split
between the cavities and the emitters, it is known as a po-
lariton. Polaritons can be treated as a quasi-particle with
interesting properties[4, 7]. While atoms are normally
used as the emitters, more exotic two level systems like
quantum dots and color centers can also be used [4, 6].

Photons can escape a cavity in the real world, reduc-
ing the efficiency of CCAs. However, techniques for con-
structing optical cavities are improving and modern tech-
niques allow for High Q-factor cavities that are more ef-

FIG. 1. A diagram of a CCA with four cavities and two
emitters. The first emitter is in the first cavity, the second
emitter is in the fourth cavity.

ficient [5, 6]. Techniques for constructing wave guides,
quantum dots, and color centers have also improved.
These improvements should make CCAs significantly eas-
ier to produce in the future [3, 4, 6].

II. METHODS

In order to understand the impact of defects and disor-
der on QST, we performed simulations using the Tavis-
Cummings-Hubbard model and perfect diagonalization.
Data was generated for the eigenvalues, eigenvectors, and
time evolution of the system.

Generating the data was done in four steps:

1. Specify the parameters of the system.

2. Construct the Hamiltonian.

3. Diagonalize the Hamiltonian.

4. Calculate the time evolution of the system.

A. Specifying the Parameters of the System

An example of a simple CCA is shown in Figure 1.
Each cavity has an energy Ec and a coupling rate J with
any neighboring cavities. Each emitter has an energy Ee
and a coupling rate g with the cavity it is located in. For
a system with Nc cavities and Ne emitters, there are Np
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parameters with Np given by (1).

Np =

{
1 + 3Ne Nc = 1
2Nc + 3Ne Nc ≥ 1

(1)

Each emitter contributes an extra parameter because the
location of the emitter must be specified.

A defect is represented by a shift in a parameter from
its normal value. For example, a cavity energy defect in
the N th cavity would be represented by ENc → EN ′c . Dis-
order is represented by randomized defects across many
parameters. For example, cavity energy disorder would
give a randomized defect to each cavity energy.

B. Constructing the Hamiltonian

The Tavis-Cummings-Hubbard model was used. The
Hamiltonian for this model is given by (2)

H = −J
∑
n

(
a†n+1an + a†nan+1

)
+
∑
n

[
Eca

†
nan+1

+
∑
e

(
Eeσ

†
nσn + g

(
σ†nan + a†nσn

))]
(2)

where n indexes the cavities and e indexes the emit-
ters. The operators a†n and σ†n represent the creation of
a photon in a cavity and the excitement of an emitter,
respectively. The operators an and σn represent the de-
struction of a photon in a cavity and the de-excitement
of an emitter, respectively.

Only systems with one excitement (one photon) were
considered. This simplified the basis to be N = Nc +Ne
dimensional. The basis states are |100 . . . 0〉, |010 . . . 0〉,
. . . , |000 . . . 1〉. Here, the ith state represents a photon in
the ith cavity for 1 ≤ i ≤ Nc. For Nc+1 ≤ i ≤ N , the ith

state represents an excitement in the (i−Nc)th emitter.
For example, a system with two cavities and two emitters
has the basis states as given in (3).

|1000〉 ↔ photon in the first cavity

|0100〉 ↔ photon in the second cavity

|0010〉 ↔ first emitter excited

|0001〉 ↔ second emitter excited

(3)

Combining the formula for the Hamiltonian with the
basis states as defined above allows us to construct a ma-
trix representation of the Hamiltonian. The Hamiltonian
matrix for a system with no emitters has the general form
of

H =


E1
c J1 0 . . . 0
J1 E2

c J2 . . . 0
0 J2 E3

c . . . 0
...

...
...

. . . JNC−1
0 0 0 JNC−1 ENC−1

c



which is an Nc ×Nc matrix.
For a system with emitters, the Hamiltonian is an N×

N matrix with the top left corner as above. The ith

emitter will have Eie placed in the position (i+Nc, i+Nc)
and will have gi placed in the positions (ki, i + Nc) and
(i + Nc, ki). Here, ki is the index of the cavity that the
ith emitter is placed in. For a system with 4 cavities and
2 emitters with the 1st and 2nd emitters in the 1st and
4th cavities, respectively, the Hamiltonian is

H =


E1
c J1 0 0 g1 0
J1 E2

c J2 0 0 0
0 J2 E3

c J3 0 0
0 0 J3 E4

c 0 g2
g1 0 0 0 E1

e 0
0 0 0 g2 0 E2

e

 .

For the same system but with the 1st and 2nd emitters in
the 2nd and 3rd cavities, respectively, the Hamiltonian is

H =


E1
c J1 0 0 0 0
J1 E2

c J2 0 g1 0
0 J2 E3

c J3 0 g2
0 0 J3 E4

c 0 0
0 g1 0 0 E1

e 0
0 0 g2 0 0 E2

e

 .

The construction of the Hamiltonian was automated
by a C program.

C. Exact Diagonalization

Exact Diagonalization involves numerically solving for
the eigenvectors and eigenvalues of the Hamiltonian ma-
trix. If we let |ψ〉 represent the state of our system, then
(4) is the time-independent Schrödinger equation.

H |ψ〉 = E |ψ〉 (4)

Thus the eigenvectors of our system are the stationary
states and the eigenvalue corresponding to an eigenvector
represents the energy of that eigenvector.

The eigenvectors may be represented by the N × N
matrix S where the ith column of S is the ith eigenvector.

S =
[
ψ1 ψ2 ψ3 . . . ψN

]
(5)

The eigenvalues may be represented by the diagonal N×
N matrix D, where the ith value on the diagonal is the
eigenvalue corresponding to the ith eigenvector.

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . . 0

0 0 0 λN

 (6)
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D. Time Evolution of the System

The time evolution of a system with initial state |ψ(0)〉
is given by (7) where we take ~ = 1.

|ψ(t)〉 = e−iHt · |ψ(0)〉 (7)

Here, e−iHt is the exponential of a matrix and is given
by (8).

e−iHt =

∞∑
k=0

1

k!
(−iHt)k =

∞∑
k=0

(−i)ktk

k!
Hk (8)

Equation (8) is lengthy to compute due to the repeated
matrix multiplications. However using the substitution
e−iHt = Se−iDtST, (8) becomes

e−iHt = S

[ ∞∑
k=0

(−i)ktk

k!
Dk

]
ST (9)

where

Dk =


λk1 0 . . . 0
0 λk2 . . . 0
...

...
. . . 0

0 0 0 λkN

 (10)

so

e−iHt = S


e−iλ1t 0 . . . 0

0 e−iλ2t . . . 0
...

...
. . . 0

0 0 0 e−iλN t

ST. (11)

Compared to (8), (11) is much faster to compute due
to the matrix multiplication being replaced by complex
exponentials. So the time evolution was calculated as
(12).

|ψ(t)〉 =
[
Se−iDtST

]
· |ψ(0)〉 (12)

This was also implemented in a C program.
The exact diagonalization and the time evolution could

both be computed very quickly for systems under con-
sideration. The computations took less than ten minutes
for the largest time evolution systems considered here
(N = 512 and 200 time steps). The fast computation
time is due to the nearly tridiagonal shape of the Hamil-
tonian. A linear algebra system can optimize the com-
putations when so many of the Hamiltonian entries are
zero.

E. Perfect QST

It was mentioned earlier that J values for perfect QST
in a cavity only system have already been discovered.

For a system with Nc cavities, these perfect J values are
given by (13).

Ji =
√
i [Nc − (i+ 1)] (13)

For a system with 7 cavities, the J values are as shown
in (14).

JN =

1 2 3 4 5 6 7

√
1 · 6

√
2 · 5

√
3 · 4

√
4 · 3

√
5 · 2

√
6 · 1

(14)

III. RESULTS

Three types of systems were explored:

1. Cavity only systems with a single defect.

2. Cavity only systems with cavity energy disorder.

3. Cavity systems with a single emitter.

A. Cavity only systems with a single defect

FIG. 2. Eigenvalues in order of magnitude. There are no
emitters and no defects in this system. The eigenvalues follow
the equation given in (15). Parameters: N = 16, Ec = 3.5,
J = 0.7.

This first system will have its eigenvalues and eigen-
vectors studied instead of its time evolution. The goal
is to find the effect that a cavity energy defect will have
on the eigenvalues and eigenvectors. Uniform J values
and cavity energies are used, N = 16, and there are no
emitters.

The eigenspectrum for a system with no defect is
shown in Figure 2. Theses eigenvalues are given by (15).

E(n) = Ec − 2J cos
(πn
N

)
where 0 ≤ n < N (15)
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FIG. 3. Eigenvalues in order of magnitude. There are no
emitters in this system There is a defect in the fourth cavity.
These eigenvalues are approximate to, but are not equal to,
the values from (15). Parameters: N = 16, Ec = 3.5, J = 0.7,
E4

c = 2.0.

The eigenvalues will be in the range [Ec − 2J,Ec + 2J),
which for the system in Figure 2 is [2.1, 4.9). Due to the
shape of the distribution given by (15), these values are
not uniformly distributed in this range. The density of
eigenvalues will be higher at the edges of the range than
at the center of the range.

The eigenspectrum for a system with a defect in the
eighth cavity is shown in Figure 3. The defect shifts all
of the eigenvalues while still keeping the general shape
of the eigenspectrum from Figure 2. The most affected
eigenvalue in Figure 3 is the smallest one, which becomes
an outlier far below the range of [2.1, 4.9) from Figure 2.

To analyze the effect of this outlier eigenvalue ψ1, Fig-
ure 4 and Figure 5 show the probability distribution for
ψ1 with no defect and with a defect, respectively. Fig-
ure 4 shows a relatively wide distribution while Figure
5 shows a relatively narrow distribution that is localized
around the defective eighth cavity. To quantify the width
of these distributions, we define the localization length ζ
to be equal to the FWHM (full width at half maximum)
of the probability distribution.

Next, we would like to find the relationship between
defect magnitude and localization length. We define dE
as dE = Ec − E′c where Ec is the normal cavity energy
and E′c is the defective cavity energy. We assume that the
relationship between defect magnitude and localization
length is a power law as shown in (16).

ζ ∝ dEp (16)

Taking the natural law of both sides of (16) yields (17),
which is a linear fit for p in terms of ln(ζ) and ln(dE).

ln(ζ) ∝ p ln(dE) (17)

FIG. 4. The probability vs cavity index for the eigenvec-
tor ψ1 corresponding to the lowest energy eigenvalue. The
probability is calculated as |ψ1|2. There are no emitters and
no defects in this system. Parameters: N = 16, Ec = 3.5,
J = 0.7.

FIG. 5. The probability vs cavity index for the eigenvector
ψ1 corresponding to the lowest energy eigenvalue. The prob-
ability is calculated as |ψ1|2. There are no emitters. There is
a defect in the fourth cavity. Parameters: N = 16, Ec = 3.5,
J = 0.7, E4

c = 2.0.

Figure 6 displays data for ln(ζ) vs ln(dE) and contains
a curve fit to find the value for p. The curve fit is done for
only part of the graph because the relationship between
ln(ζ) and ln(dE) breaks down for large dE. Notice that
an excitement’s position cannot be specified beyond what
cavity it is in. The narrowest probability distribution
possible is a spike with a probability of 1 in one cavity
and a probability of 0 in all other cavities. The FWHM
of this distribution is 0.5 and thus ζ ≥ 0.5 always. So as
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FIG. 6. The probability vs cavity index for the eigenvector
ψ1 corresponding to the lowest energy eigenvalue. The prob-
ability is calculated as |ψ1|2. There are no emitters. There is
a defect in the fourth cavity. Parameters: N = 16, Ec = 3.5,
J = 0.7, E4

c = 2.0.

ln(dE)→∞, ln(ζ)→ ln(0.5) ≈ −0.693.

FIG. 7. The probability in the final cavity vs time for the
excitement. The blue curve is a system with δ = 0 and the
green curve is a system with δ = 1. The probability is cal-
culated as |ψ|2. There are no emitters and the J values are
perfect. Parameters: N = 8, Ebase

c = 1.

The curve fit from Figure 6 gives p = −1, thus (16)
becomes (18).

ζ ∝ 1

dE
(18)

FIG. 8. A heatmap of time vs cavity index where the color
represents the probability of the excitement in that cavity.
The left heatmap represents a system with δ = 0 and the
right heat map is a system with δ = 1. The probability is
calculated as |ψ|2. There are no emitters and the J values
are perfect. Parameters: N = 8, Ebase

c = 1.

B. Cavity only systems with cavity energy disorder

We define disorder to mean many randomized defects
instead of a single defect. In the case of cavity energy,
this means the cavity energies are defined according to
Eic = Ebase

c + δ · r where − 1
2 ≤ r ≤ 1

2 is an evenly
distributed random number. This way every single cavity
energy is defective, something that corresponds to real
world conditions.

Figure 7 shows the probability in the final cavity vs
time for a system with disorder and a system without
disorder. These systems have N = 8, Ebase

c = 1 and
perfect J values. Since perfect J values are used, the
system without disorder displays perfect quantum state
transfer. This can be seen in Figure 7 since the system
without disorder periodically reaches a probability of 1
in the final cavity. This represents the photon bouncing
back and fourth between the first cavity and last cavity
with no loss in peak height.

For the system in Figure 7 with disorder, the peaks
are not periodic. The first few peaks show a rapid de-
crease in magnitude. The peak shapes begin to deform
and secondary peaks are created. The first peak, which
represents the fidelity of quantum state transfer, has a
probability less than 1. This means the disorder has ru-
ined perfect QST.

Figure 8 contains heatmaps for a system with disorder
and a system without disorder. The heatmaps display
time vs cavity position with the color representing the
probability of a photon. These systems have N = 8,
Ebase
c = 1 and perfect J values. Once again, the system

with no disorder displays perfect quantum state transfer.
The photon appears to travel as a single localized packet,
leaving a thin trail on the heat map. The system with
disorder begins with similar behavior. However, the pho-
ton’s path becomes blurrier as time goes on. The photon
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FIG. 9. The probability in the final cavity vs time for the
excitement. The blue curve is a system with δ = 0 and the
green curve is a system with δ = 1. The probability is cal-
culated as |ψ|2. There are no emitters and the J values are
perfect. Parameters: N = 8, Ebase

c = 1.

FIG. 10. A heatmap of time vs cavity index where the color
represents the probability of the excitement in that cavity.
The left heatmap represents a system with δ = 0 and the
right heat map is a system with δ = 1. The probability is
calculated as |ψ|2. There are no emitters and the J values
are perfect. Parameters: N = 8, Ebase

c = 1.

is spreading out and is no longer traveling as a localized
packet.

C. Cavity systems with a single emitter

Figure 9 shows the probability in the final cavity vs
time for a system with an emitter and a system without

an emitter. These systems have N = 8, Ec = 1, Ee =
1, g = 1, and perfect J values. Since perfect J values
are used, the system without an emitter displays perfect
quantum state transfer. The photon always returns to
the final cavity with a probability of 1.

For the system in Figure 9 with an emitter, the proba-
bility in the final cavity peaks at regular intervals, but the
first few peaks rapidly decrease in magnitude. Secondary
peaks begin to form and the peak shapes are distorted
over time. The fidelity is less than 1. So the emitter ru-
ins the perfect QST and modifies the shapes of the peaks.
This is a very similar result to the system with disorder
in Figure 7.

Figure 10 contains heatmaps for a system with an emit-
ter and a system without an emitter. The heatmaps dis-
play time vs cavity position with the color representing
the probability of a photon. These systems have N = 8,
Ec = 1, Ee = 1, g = 1, and perfect J values. The system
with no disorder displays perfect quantum state transfer.
Notice the stark color contrast between where the pho-
ton is and where the photon isn’t. However, the system
with disorder becomes blurrier as time increases. This
means that there is no longer a sharp divide between
where the photon is and the photon isn’t. The probabil-
ity of the photon being found in the final cavity drops
rapidly. This result is very similar to the system with
disorder from Figure 8.

IV. CONCLUSION

Quantum state transfer is a vital part of the roadmap
to quantum computers. An important result has shown
that CCAs are capable of supporting perfect QST if
their parameters are properly tuned. We investigated
the effect of defects and emitters on such these CCAs.
Data was generated using the Tavis-Cummings-Hubbard
model and t-dependent perfect diagonalization. We
showed that single defects localized the lowest energy
eigenvector and we found a relationship between local-
ization length and defect magnitude. It was also demon-
strated that adding disorder to the parameters or adding
an emitter ruins the perfect QST of a tuned CCA. The ef-
fect on the data of adding disorder and adding an emitter
were very similar.
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