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We present calculations of properties at T = 0 of a checkerboard lattice under the Transverse Ising model
using Exact Diagonalization (ED) of a 4 × 4 checkerboard lattice and Numerical-Linked Cluster (NLC) meth-
ods up to order six. Our results reproduce the expected behavior of the lattice for the magnetization M , the
entanglement entropy SE , the Néel state order parameter Sπ,π , and the fidelity susceptibility χF at different
values of h and J2/J1. Ongoing work will extend this analysis and construct a complete phase diagram for the
system using these methods.

I. INTRODUCTION

In recent years, the quantum properties of frustrated mag-
netic systems have become a subject of strong interest. A frus-
trated magnetic system is a system whose geometry makes
it impossible for any ordering of spins to achieve an antifer-
romagnetic alignment with every bond. Due to this, frus-
trated systems often exhibit unique behaviors in order to re-
solve this conflict. Importantly, frustration often gives rise to
high degeneracy in the ground state with unique spin arrange-
ments. One interesting property is that introducing quantum
fluctuations in frustrated systems can lift these degeneracies
and give rise to novel quantum phases such as spin liquids.
These phases can exhibit unique quantum mechanical proper-
ties, such as high internal entanglement. The possibility that
they could be present in real materials means that it is ex-
tremely important that they are closely studied.

One well known frustrated magnetic system is the two-
dimensional spin ice lattice, commonly known as the checker-
board lattice (See Figure. 1a). Under the classical Ising
Model, where nearest and next nearest neighbor bonds con-
tribute equally (that is, the case where J1 = J2), the ground
states of the two-dimensional spin ice lattice are those that
obey the Pauling Ice Rules, where each of the plaquettes with
cross bonds in Figure. 1a contain two up spins and two down
spins (see Figure. 1b). In this case, the frustration of the lat-
tice gives rise to high degeneracy in the ground state. How-
ever, the introduction of a quantum fluctuation– in particular,
the addition of a field term to the Ising Model in the form
of the Transverse Ising model (see Equation. 1)– completely
lifts this degeneracy, and the ground state instead becomes a
quantum superposition of the classical ground states in Fig.
1b. Furthermore, the lattice begins to exhibit additional inter-
esting behavior when competition between the energy of the
nearest neighbor and next nearest neighbor bonds arises (the
case where J1 6= J2). Thus, the Transverse Ising model on the
checkerboard lattice is an excellent model system for several
interesting physical systems.

Previous work using unconstrainted tree tensor network and
mapping analysis has found four distinct ground state phases
of the quantum spin ice system: Néel, colinear, quantum para-
magnetic, and plaquette-valence solid phases [1]. For this
project, we seek to confirm these phases by utilizing Exact Di-
agonalization techniques on a four-by-four checkerboard lat-

FIG. 1: 1a. The Checkerboard Lattice. J1 represents the strength of
the nearest neighbor bonds (the bonds colored in black), whereas J2
represents the strength of the next nearest neighbor bonds (the bonds
colored in red). 1b. The 6 states in a single cross plaquette that obey
the Pauling Ice Rules.

tice and up to sixth order Numerical-Linked Cluster (NLC)
methods to calculate properties of the system.

II. PROCEDURE

A. The Hamiltonian

The Hamiltonian of interest is the Transverse Ising Model:

H = J1
∑
<ij>

Szi S
z
j + J2

∑
<<ij>>

Szi S
z
j + h

∑
i

Sxi (1)

Where < ij > indicates the sites of the nearest neighbor
bonds,<< ij >> indicates the sites of the next nearest neigh-
bor bonds, and i is an indication of all of the sites in the lattice.
h is the strength of the quantum fluctuation, and J1 and J2 are
the strengths of the nearest and next nearest neighbor bonds,
respectively. Finally, Sz and Sx refer to the components of
spin of magnitude 1

2 in the z and x directions, respectively.
For this problem, we apply the Hamiltonian to the spin ice
lattice presented in Figure. 1a.
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B. Exact Diagonalization

With Exact Diagonalization techniques, we focus on the
4 × 4 checkerboard lattice shown in Figure 1a. with periodic
boundary conditions applied as in Figure. 2.

FIG. 2: The periodic boundary conditions as applied to the 4 × 4
checkerboard lattice. Color codes indicate which squares are identi-
cal.

Since there are 216 possible configurations of spins in the
lattice, the size of the Hamiltonian in this case becomes 216×
216. Full diagonalization of a matrix of this size (i.e. finding
all of the eigenvalues and eigenvectors) is extremely difficult
with the machines available, and thus we exploit symmetries
in the Hamiltonian to block diagonalize the matrix and reduce
the overall computational memory required. In particular, if
we take the Hamiltonian in Equation. 2 and switch to the Sx
basis through a rotation of π2 , then the Hamiltonian becomes:

H2 = J1
∑
<ij>

Sxi S
x
j + J2

∑
<<ij>>

Sxi S
x
j − h

∑
i

Szi (2)

H2 acted on a generic spin state (. . . σi. . . σj . . . ) of the lat-
tice will produce a state that has the same total number of
spin ups and spin downs. Thus, exploiting this symmetry, we
can block diagonalize the Hamiltonian into two blocks: one
with states consisting of an even number of up spins, and one
with states consisting of an odd number of up spins. This
cuts down the effective size of the matrix that needs to be di-
agonalized by a factor of two, allowing the full Hamiltonian
to be completely diagonalized. For the specific program im-
plementation, we drew heavy inspiration from the algorithmic
procedures discussed in [2]. For full diagonalization, we uti-
lized eigen(...) from the LinearAlgebra package of the Julia
programming language.

However, since we are mostly interested in the properties
of the system at T = 0, full diagonalization is not required
for most properties of interest. For the most part, obtaining
the ground state and its energy will suffice. The Lanczos al-
gorithm is an efficient diagonalization algorithm that can effi-
ciently find a small number of the smallest or largest eigenval-
ues and their corresponding eigenvectors, even for matrices of
extremely large sizes. This makes the Lanczos algorithm well
suited for our purpose and allows us to explore systems even

larger than the 4 × 4 lattice– for the Hamiltonian matrix of
the 16-site lattice, the algorithm takes less than 2 seconds to
complete. For this project, we used eigsolve(...) from Julia’s
KrylovKit package.

One important consideration is that the 16-site lattice con-
tains unusual symmetries in its geometry that make its prop-
erties less representative of the infinite checkerboard lattice at
low fields. We are currently applying ED techniques to a 3×8
24-site lattice, which has less of these symmetries and is more
representative.

C. Numerical-Linked Clusters Method

As aforementioned, finite lattices such as the 16-site lat-
tice can exhibit symmetries that cause properties to exhibit
unusual trends, particularly at low fields. Larger lattices lose
these symmetries but are also much harder to diagonalize
since the Hamiltonian sizes grows exponentially with the size
of the system. Thus, it is imperative that different techniques
be used to calculate properties to create a comparison and
gauge the effect of these symmetries. One such technique is
the Numerical-Linked Cluster (NLC) Method, a method that
allows one to estimate an extensive property P for an infinite
lattice L:

P (L)

N
=

∑
c

L(c)W (c) (3)

Here, c represents the subclusters of the lattice, and L(c) is
the lattice constant of that subcluster (i.e. how many times the
subcluster arises within the lattice). The subclusters used for
the checkerboard lattice are shown in Figure. 3, chosen to be
the plaquettes with the cross interactions and combinations of
these plaquettes.

FIG. 3: The clusters of the checkerboard lattice used in the NLC
method.

The weight W (c) of a subcluster c is defined recursively as
follows:

W (c) = P (c)−
∑
s⊂c

W (s) (4)

Where P (c) is the property calculated on the subcluster c,
and s ⊂ c represent all of the subclusters of c [3].
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The NLC program is currently organized so that it takes in
a text file containing all of the information about the subclus-
ters, up to subclusters consisting of a chain of six plaquettes
(i.e. an NLC order of six). The program reads the data and
then applies Exact Diagonalization methods to calculate the
property P (c) of each subcluster c, from which it generates a
list of weights and runs the NLC calculation.

An important thing to note is that because we are utilizing
a low finite order in our NLC calculation, the calculation does
not converge well at low field (h) values. In particular, the
NLC first begins to diverge at the field value where the phase
transition occurs, hc. We will see this become apparent in the
results.

III. RESULTS AND DISCUSSION

Before we present the results, we’d like to establish that
all exact diagonalization results were obtained using a 4 × 4
checkerboard lattice. In addition, any graph labelled “order x”
is one produced by an NLC calculation of order x. Finally, all
calculations were done on the ground state, at T = 0.

A. Magnetization

We first plot the results of ED and the NLC for the magneti-
zation along the field, M , against the field h in Figure. 4. The
magnetization is defined below, and it measures the extent to
which the spins in the lattice are oriented parallel to the field.

M =
1

N

∑
i

〈σxi 〉 (5)

Here, ψ refers to the state of the N-site system. σxi refers to
the operator representing the component of spin in the direc-
tion of the field.

Below, we plot the magnetization as a function of h for the
case where J1 = J2 = 1. We expect that as the field strength
is increased, more and more of the spins will begin to align
with the field, and when h >> J1 and h >> J2, we expect
that M = 1

2 . In Figure. 4, we see that the field asymptotically
seems to approach 0.5 as the field strength is increased.

An important feature of the plot in Figure. 4 is the field
at which the inflection point occurs for the results are. There
can never be a true phase transition observed from the ED line
(i.e. an observed discontinuity in the derivative), since the ED
analysis is done on a finite system. However, the inflection
point in the ED graph is still indicative of where the phase
transition in the infinite system roughly is. The NLC result,
however, does indicate the location of the phase transition,
since it is an estimation of the property for the infinite system.
In this case, however, the ED result diverges from the NLC
result at around h = 0.6, indicating that the ED results are not
indicative of the infinite system at fields below this value.

Although we have not yet determined the exact numerical
value at which the inflection points occur in these graphs, a

FIG. 4: The magnetization M plotted against h for the case where
J1 = J2 = 1. We see all results asymptotically approach 1/2 with
increasing field. In addition, we can see that the inflection point in
the NLC result seems to be roughly around h = 0.2, indicating the
field at which a phase transition occurs.

look at the NLC results gives a rough approximation of 0.2.
For the ED line, we see that the inflection point occurs at a
slightly higher h value, at around h = 0.23. We will see later
on that other graphs of other properties point to the same field
value for the phase transition.

Another important takeaway from this plot is that the order
5 and 6 NLC results drastically diverge when h is extremely
low. This confirms that the NLC method does not converge
well at low fields, and so those results should not be trusted.
However, we see that at higher fields, the NLC results agree
almost perfectly, both asymptotically converging to 1

2 with the
increasing field, as expected. Additionally, it’s worth noting
that the NLC and ED results are in almost exact agreement at
higher fields (at the aforementioned h = 0.6), which is to be
expected. Both the NLC and ED predict the infinite system
extremely well for high fields.

We also present Exact Diagonalization results for M when
the ratio J2

J1 is varied:
The inflection points in this graph exhibit an interesting

trend. We see that the inflection point of the curve of J2 = 0
be at high fields, and as J2 increases, the inflection points of
their respective curves shifts back down to low fields. How-
ever, once J2 > J1, we see that the inflection points begin to
shift back to the right, suggesting that the phase transition is
once again occurring at higher fields. This suggests that as J2
moves further away from 1, the phase transition shifts towards
higher fields.

B. The Entanglement Entropy

The Von Neumann entanglement entropy, SE , is a purely
quantum mechanical property that measures how entangled
a sublattice A is with the rest of the lattice. It is defined as
follows:
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FIG. 5: The magnetization M plotted against h for the case with
varying ratios of J2/J1. The ED was calculated using exact diago-
nalization methods on a 4× 4 lattice.

SE = −Tr{ρA ln ρA} (6)

Where ρA is the reduced density matrix constructed for the
subsystem A with its complement Ā, ρA = Tr Ā|ψ〉〈ψ|. For
the checkerboard lattice, we choose the subsystem A to be a
single plaquette of our lattice, highlighted below in Fig. 6.

FIG. 6: The subsystem used for calculation of SE can be any of the
highlighted squares.

We present NLC and ED results for the entanglement en-
tropy in Fig. 7.

Both the ED and the NLC results suggest that the introduc-
tion of quantum fluctuations destroys the system’s high entan-
glement phase, where all results show the entanglement en-
tropy sharply dropping off at high fields. An important thing
to note is that the inflection point in the NLC curves here
roughly aligns with where the inflection point is in the NLC
M curve. This continues to strongly suggest a phase transition
at around that field value. We also now note that this phase
transition is accompanied by a sharp drop in the system’s en-
tanglement.

Another important takeaway from the NLC results is that
its tend suggests that the entanglement entropy peaks before
falling down again as h goes to 0. We know that the entan-
glement entropy should be lower than ln 6 as h goes to 0 for

FIG. 7: The results for the entanglement entropy from the NLC and
ED calculations as a function of the field. Here, J2 = J1. We see a
large divergence of the NLC calculations at low fields.

reasons discussed earlier. Here, we see that the NLC results is
set to exceed ln 6 (as previously discussed ln 6 comes from the
6 degenerate states for the classical Ising model) right before
the NLC result breaks down. Thus, it suggests that SE must
peak at some value equals to or higher than ln 6, then fall back
down to the expected low field (h) value.

We see the ED results for SE start around ln 6 ≈ 1.79. This
is an expected result for the 16-site lattice. For low fields,
each of the 6 states that obey the ice rules for the subsystem
A should each be equally likely to occur, resulting in a high
entanglement of the plaquette with the rest of the system at a
value right below ln 6. However, this result will not be true
for lattices of higher dimension. In those systems, the super-
position of the 6 states will no longer be equivalent and will
favor the Néel states instead. Since we know that the entropy
is maximized when the 6 states are in an equal superposition,
we expect the entanglement entropy to be smaller than ln 6
(In fact, ln 6 is the upper limit for the checkerboard lattice’s
entanglement entropy when the field goes to 0).

It’s worth noting that the entanglement entropy is only max-
imized for the 16-site lattice because the 16-site lattice ex-
hibits many additional symmetries that larger lattices do not
have. For instance, because of its small size, the sites at the
ends of a diagonal drawn across the lattice are actually func-
tionally equivalent. This also explains why many of the quan-
tities, such as the magnetization, which we have seen earlier,
become inaccurate at low fields for the ED result.

We can also further expand on and confirm this result if we
plot the ED results for the entanglement entropy at a low field
value, h = 0.1, against the ratio J2

J1
in Figure. 8.

For J2/J1 < 1, we see that the entanglement entropy sits at
a constant value at around ln 2. This reflects the fact that the
ground states for the plaquette are the 2 Néel states at h = 0,
and so at low fields we expect an equal superposition of those
2 states. Right at J2/J1 = 1, we see the entanglement entropy
spiking at ln 6, as we have seen before. The entanglement en-
tropy then falls back down to ln 4, since there are 4 ground
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FIG. 8: The results for the entanglement entropy at low fields (h =
0.1) as a function of J2/J1. Notice the sharp jump from ln 2 to ln6
as J2/J1 goes to 1, then back down to ln4 as J2/J1 further increases.
This reinforces the fact that there are 2, 6, and 4 degenerate states in
when h = 0 for each plaquette for each of the ranges of J2/J1.

states for the plaquette at h = 0 when the next nearest neigh-
bor bonds contribute more.

When the field is increased for values of J2/J1 < 1, we see
an interesting behavior where the entanglement entropy rises
briefly before sharply falling off. This behavior is shown in
the Figure. 9 for multiple values of J2/J1.

FIG. 9: The results for the entanglement entropy as a function of the
field for multiple values of J2/J1

We suspect that the brief rise in entanglement entropy for
the curves where J2/J1 < 1 indicate the point at which the
effect of J2/J1 is not significant in comparison to that of the
field. At this point, those curves begin to chase after the
curve of J2/J1 = 1, approximately following its curvature
for higher fields. When the field is much lower compared to
J2/J1, however, the effects of J2/J1 become apparent,and so
the entanglement entropy falls away from the J2/J1 curve,
back down to ln 2.

C. Néel Order Parameter

Another important quantity of interest in is the order pa-
rameter for the Néel state, Sπ,π , which is defined as follows:

Sπ,π =
1

N

∑
i

∑
j

〈σzi σzj 〉(−1i+j) (7)

Here, i, j span all of the sites inside the N -site lattice,
where each site is assigned to have a number that’s either 1 or
0. The sites are numbered in a way such that any site whose
numbering is 1 will have nearest neighbors who are numbered
with 0, as indicated in Fig. 10. σx in this case refers to the
direction of the field. In the Sz basis, the field points along the
x axis.

FIG. 10: The numbering of sites used in the calculation of Sπ,π .

NLC calculations of different order and ED results for Sπ,π
are plotted below as a function of the field for the system J1 =
J2:

FIG. 11: The results for the Sπ,π entropy from the NLC and ED
calculations as a function of the field. The ED results intersect the y
axis at Sπ,π ≈ 0.442200460

We expect Sπ,π to be high when there is Néel order in the
state. At low fields for J2 = J1, the ground state should be
roughly in an equal superposition of the 6 states that obey the
ice rules, including 2 that are of Néel order. The presence of
these Néel states in the superposition means that we expect
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the value of Sπ,π to be relatively high at low fields, reflecting
the presence of those two states in the superposition. The in-
creasing field causes the spins to align in the direction of the
field. In this case, Sπ,π should drop to 1

4 as the field increases,
since every term in the double sum except for the case where
i = j will be 0. Both the NLC and ED results in Fig. 11 sup-
port the high field behavior. Before the NLC results diverge,
we see that curves exhibit asymptotic convergence towards
0.25 from some higher value except for the curve at order 3,
which exhibits irregular divergent behavior. The ED results
reflect the predicted behavior at low fields, but in contrast to
the previous quantities calculated, the NLC results don’t seem
to agree well until the field is extremely high (h > 1), and
so we cannot trust it to confirm Sπ,π’s behavior at low fields.
We suspect that there is either i) a mistake in the Sπ,π cal-
culation, or ii) the highly frustrated system exhibits a lot of
low order fluctuations, resulting in the large divergence. The
overall oddity in the NLC result for sπ,π is currently under
investigation, particularly the result for an NLC calculation of
order 3.

Like the other quantities, we also plotted the ED results for
Sπ,π with different values of J2/J1.

FIG. 12: The ED results for Sπ,π as a function of the field at different
ratios of J2/J1

For J2 < J1, we see that Sπ,π starts at a very high value
of 4. When the next nearest neighbors contribute less to the
Hamiltonian, this means that the two Néel states are the pre-
ferred ground states when h = 0. Thus, when the field is low
but non-zero, we expect the ground state to be in a superpo-
sition of these two Néel states, causing Sπ,π to be extremely
high. This order is destroyed as the field increases, causing
Sπ,π to sharply drop back down.

In contrast, when J2 > J1, Sπ,π starts near 0 and rises. We
expect this behavior because at h = 0, this ratio of J2/J1 will
have the ground states to be the 4 states of non-Néel order that
obey the ice rules. This means that at low but nonzero fields,
the ground state will be in a superposition of these non-Néel
order states, meaning that Sπ,π naturally will assume a low
value. As the field is increased, the spins are aligned more and
more towards the x-direction, and so Sπ,π approaches 0.25, as
discussed before.

D. Fidelity Susceptibility

The fidelity susceptibility χF is a measure of how sensitive
the ground state at a particular field is to changes in the field.
The fidelity is defined with an inner product of the ground
state at h, ψ(h), and the ground state when the field is per-
turbed to h + dh, ψ(h + dh). A notable indicator of a phase
transition is where the ground state changes incredibly rapidly
with the field, which is reflected by peaks in the fidelity.

χF =
2(1− |〈ψ(h)|ψ(h+ dh)〉|)

dh2
(8)

Below, we plot the ED results for the fidelity for different
values of J2/J1.

FIG. 13: The ED results for the fidelity as a function of the field at
different ratios of J2/J1

We see the same trend in the phase transitions as J2/J1 is
varied. The peak in the fidelity for low J2/J1 starts at high h,
falls to a minimum when J2/J1 = 1, then rises back to higher
fields as J2/J1 exceeds 1. This further confirms the trend of
the field value at which the phase transitions occurs, where it
increases as J2/J1 moves away from 1.

IV. CONCLUSION

The plots shown above affirm that ED and NLC methods
can reproduce the expected behavior of the system as the field
changes. The data from all of the calculated properties suggest
that the phase transition shifts towards higher fields as J2/J1
moves away from 1. In addition, we see expected behavior
for all of these quantities as the field and J2/J1 are varied.
Currently, more data needs to be run for a construction of the
system’s phase diagram, and ongoing work is being done to
obtain the necessary data.

A. Future Work

Currently, only ED has been used to calculate the fidelity.
One future direction would be to utilize the NLC method to
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calculate the fidelity and compare the results with those of
ED.

Another area of work that could be done would be to add
a correction to the NLC method so that it converges better at
low fields. As it was reflected in most of the NLC results, the
method does not converge well for low fields for finite order,
particularly after the point where the phase transition roughly
occurs. Adding a correction could make the NLC results more
reliable at low fields and provide a better understanding of the
infinite checkerboard lattice’s behavior at lower fields.

Additionally, calculating the numerical value at which the
NLC method begins to diverge at different values of J2/J1
would be an immediate next step to get an estimate of where
the phase transition occurs and produce a phase diagram of hc
vs. J2/J1.

In conclusion, from the data, it appears that ED and NLC

methods captures the expected behavior of the system, al-
though much more work needs to be done in order to construct
the phase diagram using these methods and draw additional
conclusions.
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