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We use Numerical Linked Cluster Expansions (NLCE) to study the site diluted transverse-field Ising model
on the square-lattice at T = 0. NLCE with a self-consistent mean-field on the boundary of the clusters is used
to obtain the ground state magnetization, susceptibility, and structure factor as a function of transverse field h
and exchange constant J . Adding site-dilution to the model turns NLCE into a series expansion in the dilution
parameter p. Studying the divergence of the structure factor allows us to establish the phase-diagram in the h/J
and p plane. By studying the magnetization of the system in a longitudinal field, we investigate the Griffiths-
McCoy (GM) singularities. We find that the magnetization develops non-linearities in the Griffiths phase with
exponents that vary continuously with h. Additionally, the probability distribution of the local susceptibility in
the Griffith’s phase is studied in terms of its moments.

I. INTRODUCTION

Disorder occurs in physical systems for a plethora of rea-
sons. We study a two-dimensional disordered version of
the transverse field quantum Ising model–a classic statistical
model of a magnet consisting of a lattice of 1/2 quantum spins
constrained to orient along a single axis. The spins are typ-
ically taken to interact with those nearby, causing them to
tend to point in the same direction as their neighbors. Ad-
ditionally, the spins are coupled to an external “transverse”
magnetic field which points in a direction perpendicular to the
axis of their orientation. To introduce disorder into the model,
we allowed the sites of the lattice to be randomly omitted,
making the lattice “dilute.” Physically this has the interpre-
tation of a magnetic substance with a fixed concentration of
non-magnetic impurities or alloyed with a non-magnetic sub-
stance. This model displays two noteworthy features: a dis-
continuity in the critical value of the transverse field as a func-
tion of a parameter controlling the strength of the dilution and
Griffths-McCoy singularities.

In the pure system with no dilution the Ising model displays
two phases. When the coupling to the transverse field is very
large, the model possesses a single ground state in which the
spins are mostly aligned with the direction of the transverse
field. The model is said to be in a disordered phase; there is
no long-range order and the overall magnetization of the sys-
tem along the Ising axis is zero. When the coupling strength is
tuned below a certain critical value the model changes phase
and the spin-spin interactions take over. In this new, ordered
phase, there are two degenerate ground states in which the
spins point predominately in one of two directions along their
naturally preferred axis and the system acquires nonzero mag-
netization.

When site dilution is introduced, this picture remains intact
so long as the dilution is weak. When the lattice is highly
dilute however, it is mostly composed of disconnected clus-
ters of spins and so long-range order can never develop and
the system never enters an ordered phase regardless of the

strength of the transverse field. When the dilution parame-
ter is brought above a certain critical value, the lattice exhibits
a phase transition in its dilution, transitioning from predom-
inately disconnected to a predominately connected. When
this happens, the lattice is said to “percolate” and the point at
which the phase transition occurs is referred to as the perco-
lation threshold. As originally conjectured based on informal
heuristic argument by Harris [1], this transition is not continu-
ous in the critical value of the transverse field. Below the per-
colation threshold, the critical strength of the transverse field
is zero as no long-range order can develop. As soon as the
lattice percolates however, clusters of spins spanning the en-
tire length of the lattice will dominate, permitting long range
order with a critical transverse field strength of at least that
of the one-dimensional pure system. This picture was later
confirmed by Stinchcombe with analytic arguments using the
renormalization group by [2].

Griffiths Singularities are nonanalyticities in statistical
quantities of disordered models which arise due to the low but
nontrivial impact of large non-dilute regions in an otherwise
dilute lattice. These regions tend to magnetize, locally enter-
ing a ferromagnetic phase despite the disordered behavior of
the bulk lattice, effectively behaving as embedded, finite-size
copies of the pure system [3]. This has the effect of introduc-
ing weak “Griffiths” singularities in the low-concentration,
low-field regime. In classical systems, the strength of these
singularities scale inversely with the size of the region and
consequently they are too weak to be detected either experi-
mentally or numerically. However, in quantum systems, tun-
neling between the ground state and first excited states in the
locally non-dilute regions causes the strength of the singular-
ities to scale also with the difference in energy levels of the
ground state and first excited state. This scales exponentially
with region size, leading to a contribution of order unity. As
a consequence, these quantum “Griffiths-McCoy” singulari-
ties are observable both in experiments and numerical calcu-
lations. For a more comprehensive discussion on Griffiths-
McCoy singularities in a myriad of disordered models and on
the role of disorder in general in quantum critical behavior,
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see [4].
In this work, we study the critical behavior and Griffiths-

McCoy singularities of the dilute quantum transverse-field
Ising model using a computational technique for generating
series expansions called numerical linked cluster expansions
(NLCE). We focus specifically on the quantum critical behav-
ior at zero temperature. We use NLCE to study the critical be-
havior of the susceptibility, magnetization, and structure fac-
tor to establish a numerical approximation of the location of
the different phases and critical points of the dilute transvers-
field Ising model. We pay special attention to the existence
of Griffiths singularities, finding numerical evidence for their
existence in the behavior of the magnetization as a function of
longitudinal field and the probability distribution of the local
susceptibility.

II. OVERVIEW OF APPROACH

A. Model

We consider the zero temperature behavior of a site-diluted
quantum transverse field Ising model on a two-dimensional
square lattice. The model is parametrized by the three element
set {J, h, p}, where J an exchange constant controlling the
strength of nearest-neighbor spin-spin interactions, h is the
coupling strength to a transverse field, and p is the dilution
parameter. The Hamiltonian of the model is:

H = J
∑
〈i,j〉

εiεjσ
z
i σ

z
j + h

∑
i

εiσ
x
i , (1)

where 〈·, ·〉 denotes nearest-neighbor pairs of sites on the lat-
tice and σz and σx are the pauli matrices. The εi terms are
site dilution variables: random variables with bimodal dis-
tribution, taking values of 0 and 1 with probability p and
1− p respectively. These parameters are referred to as having
“quenched” disorder, as they randomly take some fixed value
and do not evolve with the system.

At zero temperature, thermal averages reduce to ground
state expectation values. We denote the ground state by |0〉.

We will take J < 0 to study the ferromagnetic problem in
which the nearest-neighbor interactions favor adjacent spins
aligning along the same direction. Broadly speaking, the ra-
tio h/J controls what phase the model is in. However, the
magnitude of J does not change the qualitative behavior of
the model. Subsequently, for convenience we constrain our
analysis to a fixed J = −1.

B. Method

NLCE is a method of approximating an extensive property
as a series with terms computed by exact diagonalization of
small, finite size systems—‘clusters’—which embed into the
lattice of the full model as subgraphs. Specifically, given an
extensive property P , its per-site value in the thermodynamic

limit is given by subtracting sub-weights:

lim
N→∞

P

N
=
∑
c

L[c]W [c]. (2)

The lattice constant L[c] denotes the number of ways the clus-
ter c can embed into the lattice. W [c] is the weight of the
cluster in the lattice, as determined recursively by:

W [c] = P [c]−
∑
c′⊆c

W [c′], (3)

where, c′ ⊆ c is a sub-cluster—a cluster which embeds into
the cluster c—and P [c] is the property computed on the clus-
ter.

For disordered models, one is typically interested in quan-
tities of the form [P/N ]av, where [...]av denotes the quenched
average over the site dilution variables εi. NLCE can be gen-
eralized to a quenched average in a straightforward way by
simply computing the quenched average of each cluster indi-
vidually before summing up the total value of the property. In
the case of the site diluted model we study this greatly simpli-
fies the resulting series. For any cluster, any configuration of
the site dilution variables εi in which any site is omitted will
reduce the cluster to a collection of its sub-clusters, result-
ing in zero weight after the weights of sub-clusters are sub-
tracted away. Only the single configuration with no dilution
survives the sub-weight subtraction. Subsequently, the NLCE
of the quenched average of a property P reduces to simply the
NLCE of P for the pure system with an additional factor of
pN [c], the probability of the non-dilute configuration:

lim
N→∞

[
P

N

]
av
=
∑
c

L[c]W [c]pN [c] ≡
∞∑
n=1

anp
n, (4)

where N [c] denotes the number of sites in c. As a conse-
quence, the NLCE becomes a power series in the dilution pa-
rameter p.

III. PURE SYSTEM ANALYSIS

To demonstrate the efficacy of this method, as an exercise
we first considered the non-dilute Ising problem (that is, the
p = 1 limit). We analyzed the susceptibility and structure fac-
tor, as both of these quantities are known to diverge strongly
near the pure system’s critical point of hc ' 3.044. The struc-
ture factor S is defined by:

S =
∑
i,j

〈σzi σzj 〉 − 〈σzi 〉〈σzj 〉, (5)

where we use the notation 〈σzi 〉 = 〈0|σiz|0〉. In order to com-
pute the susceptibility, we add an additional longitudinal field
term to the Hamiltonian:

H = J
∑
〈i,j〉

σzi σ
z
j + h

∑
i

σxi + hL
∑
i

σzi . (6)
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With this additional factor, letting E0 denote the ground state
energy, the susceptibility is given by:

χ = lim
hL→0

∂2E0

∂hL
2 . (7)
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FIG. 1: (a) shows the structure factor S and (b), the susceptibility χ.
In both plots. For both quantities, the NLCE is truncated to include
only clusters with 10 or fewer bonds. Curves of order 1-10 in the
number of bonds are shown simultaneously with increasing redness
starting with blue at first order. The NLCE converge well for h > hc

and increase sharply close to hc before saturating for small values of
h. The point at which divergence begins appropriately occurs closer
to hc the higher the order.

We used NLCE to compute the susceptibility χ and struc-
ture factor S for a range of values of h centering around hc.
The results of the computation are shown in fig. 1. Because
convergence is poor in the ordered (h <∼ hc) phase, we sought
a way of regulating both of these quantities. To achieve this,
we included an additional term in the Hamiltonian of each
cluster to account for the effects of the effect of the full lat-
tice:

H = J
∑
〈i,j〉

σzi σ
z
j + h

∑
i

σxi +m(h)
∑
i

qi[c]σ
z
i . (8)

Specifically, this added term is a mean field acting on the
boundary of the cluster: the quantity qi[c] represents the num-
ber of neighbors on the site i in the cluster c. Physically,
we expect the h-dependent value of m to satisfy the self-
consistency conditionm =M , whereM is the magnetization
of the lattice, defined by:

M =
∑
i

〈σzi 〉. (9)

We implemented this as a constraint numerically by comput-
ing M for a small number of guessed, constant values of m
for each h, then interpolating to find the approximate value of
m satisfying the constraint. Computed for a range of h, this
gives an approximation for the magnetization M , which we
used to regulate the convergence of the NLCE for both S and
χ. The result of this computation is shown in fig. 2.
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FIG. 2: In all three plots, orders 4-10 in the number of bonds are
shown, with higher orders shown in redder colors. (a) shows the
magnetization computed using the self-consistency constraint. Its
shape is qualitatively typical for the magnetization of a ferromag-
net, falling to zero near the critical point. (b) and (c) show curves
of the structure factor S and susceptibility χ plotted using the mag-
netization self-consistent mean field. Both quantities now converge
very well in both the ordered and disordered phases, peaking near the
critical point.

IV. DILUTION PROBLEM

A. Phase Diagram

We now turn our attention to the dilute Ising problem. In the
limit of h → 0, this becomes a percolation problem with two
phases controlled by the value of the percolation parameter
p. At low values of p, highly dilute configurations dominate,
the lattice becomes a collection of disconnected clusters, and
no long-range order develops. Above the percolation thresh-
old pc ' 0.59, the lattice is said to percolate and non-dilute
clusters play a larger role and long range order can develop.
For small, nonzero values of h, it is believed that a flat phase
boundary controlled by the change in typical geometry of the
lattice at pc independent of h extends into the h − p plane
to some value hM with a lower bound of h = 1, the critical
point of the one-dimensional model. Near the critical point
hc of the pure system, the phase boundary is believed the ex-
tend smoothly downward into the plane before meeting the
flat boundary at the multi-critical point hM . We used NLCE
to confirm this picture of the phase diagram.

Due to the simplification of NLCE to a power series as
given by eq. (4), we are able to use the ratio method to ex-
trapolate how the critical point pc varies as a function of h.
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Specifically, for values of p near pc, we expect the structure
factor S to obey an asymptotic power law: S ∝ (p − pc)−γ .
Subsequently, we expect the coefficients of the power series
for S from eq. (4) to obey (up to corrections of order 1/n2):

an
an−1

=
1

pc

(
1 +

γ − 1

n

)
. (10)

A plot of these ratios is shown in fig. 3 for a range of values
of h. One can obtain an approximation of pc at some h from
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FIG. 3: Plot of ratios an/an−1 as a function of 1/n for a repre-
sentative range of h-values showing n taking values 2-10. For large
values of h, these plots are all relatively flat. For values of h <∼ hc,
it is clear from this plot that the intercept of a linear regression of
the values shown here will yield a value of 1/pc that is < 1. This is
obviously nonphysical, corresponding to a probability greater than 1.
Subsequently, the point at which the computed pc becomes physical
gives an approximation of the pure system critical point hc. Addi-
tionally, for sufficiently small values of h, the plots here become very
nonlinear, indicating the convergence of the NLCE to break down be-
low some value close to hM . We believe this is to be expected, as
at the multi-critical point hM , critical behavior switches from being
governed by the value of h to being controlled by the geometry of
the lattice, leading to the breakdown of the NLCE with h below hM .

the intercept of a regression of these ratios computed at h. We
used this method to compute pc as a function of h and used
the results to build an approximate phase diagram shown in
fig. 4(a).

In addition to this, the slope of the linear regression ratios
can be used to approximate the critical exponent γ. In the
region where this method converges well and is physically
meaningful, γ is approximately constant, with some fluctu-
ation, as shown in fig. 4(b).

B. Griffiths-McCoy Singularities

Griffiths-McCoy (GM) singularities occur in disordered
quantum models in their disordered phases. Rare, ordered re-
gions can locally occupy a state which mimics the ordered
phase of the pure system. In the context of the dilute Ising
problem, these manifest in the low p and h regime—what we
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FIG. 4: (a) shows a complete phase diagram, showing distinct ferro-
magnetic (FM), paramagnetic (PM), and Griffiths (GP) phases. Us-
ing linear regression on data like that shown in fig. 4 for many values
of h, we established the boundary shown by the full line. This line
begins at the approximate hc of the pure system, which we find to
be 3.03, close to the known value of 3.04. The flat continuation of
the phase boundary we expect after convergence of the NLCE breaks
down for h < hM is shown by the horizontal dashed line. This point
begins at hM ' 1.65. This line intersects the p axis at the percola-
tion probability pc, which we find to be 0.58, also close to the known
value of 0.59. The dotted line marked with hd−1

c shows the value of
the one-dimensional critical point, a lower bound on hM . The ver-
tical dashed line indicates a separation between the ordinary param-
agnetic phase and the disordered Griffiths phase where we observe
Griffiths-McCoy singularities to be present. (b) shows the value of
γ computed from the slope of the same linear regression. This gives
the rough bounds 0.47 <∼ γ <∼ 0.61.

will refer to as the Griffiths phase—as non-dilute regions in
an otherwise highly dilute lattice. This region is shown in fig.
4(a) labeled GP. For small values of h, these regions can oc-
cupy a ferromagnetic phase independent of the behavior of the
rest of the lattice.

We expect GM singularities to manifest in the behavior of
the magnetization M in a system with a longitudinal external
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field hL:

H = J
∑
〈i,j〉

εiεjσ
z
i σ

z
j + h

∑
i

εiσ
x
i + hL

∑
εiσ

z
i . (11)

The magnetization as a function of the longitudinal field of a
pure ferromagnet is typically linear in the limit of small hL.
However, for our dilution model for values of p below pc and
values of h below hc, we find curvature in the magnetization
vs. hL curve, as shown in fig. 5. Specifically, the magnetiza-
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FIG. 5: Both plots show computations for p = 0.5, well below the
percolation threshold pc and in the Griffiths phase for small h. Com-
putations were done to 10th order in the number of sites. (a) shows
magnetization M plotted as a function of longitudinal field hL for a
for a representative range of h-values. Below the critical point hc,
curvature begins to develop in the small-hL limit. This can be better
visualized in (b), showing a log-log plot of the same quantities. For
h > hc, the slopes of the log-log plot are about 1, while for values
h < hc, they are noticeably less than 1.

tion obeys some nonlinear power law M ∼ hL
a. To quantify

how the exponent varies with h, we used a linear fit of a log-
log plot of M and hL to compute the value of a for a range
of values of h. As shown in fig. 6, for h < hc, this varies
continuously as a function of h.

As an additional indication of the influence of GM singu-
larities, we considered the probability distribution of the local
susceptibility χloc =

∑
i χi, with the one-site susceptibility

defined by adding a one-site longitudinal term to the Hamilto-
nian:

H = J
∑
〈i,j〉

εiεjσ
z
i σ

z
j + h

∑
i

εiσ
x
i + hLεiσ

z
i . (12)

The one-site susceptibility is then given by:

χi =
∂2E0

∂hL
2 . (13)

We study this probability distribution by examining the behav-
ior of its moments χnloc ≡

∑
i χ

n
i . For small values of n, the

value of h at which the moments begin to diverge is smaller
than pure system hc critical point, but as n is increased, the
point moves closer to hc. Curves for the moments plotted
over a range of values of h and their points of divergence as
a function of 1/n are shown in fig. 7(a) and (b) respectively.
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FIG. 6: Plot of the exponent a as a function of h for p = 0.5. For
h > hc, a ' 1 as is typical of the pure system. For h < hc, a
begins decreasing continuously with h, indicating the influence of
GM singularities.

This movement of the divergence point is indicative of tails in
the probability distribution of χloc induced by the presence of
GM singularities.

V. CONCLUSION

In this work, we have used NLCE to compute the magneti-
zation, structure factor, and susceptibility of the zero tempera-
ture dilute quantum transverse-field Ising model. In analyzing
the pure system, we demonstrated the efficacy of the NLCE at
computing the magnetization as a function of transverse field
strength h by adding to the Hamiltonian a mean-field term
coupled to the boundary of each cluster and imposing a self-
consistency constraint between the strength of the coupling
and the magnetization. We used this to regulate the conver-
gence of the NLCE in the ordered phase of the structure factor
and susceptibility, yielding an approximation that converged
well in both the low and high h regimes. In the problem with
dilution, we used the asymptotic behavior of the structure fac-
tor near the percolation threshold probability pc to compute pc
as a function of h, leading to an approximate phase boundary.
We found approximate values of the pure system critical point
at hc ' 3.03 and the percolation threshold and pc ' 0.58,
in reasonable agreement with known results of 3.04 and 0.59
resp. Additionally, we found the multi-critical point at which
the phase boundary flattens to be at hM ' 1.65, above the
known lower bound of 1, and established bounds on the struc-
ture factor exponent γ of 0.47 <∼ γ <∼ 0.61.

For small values of p and h, we found numerical evidence
Griffiths-McCoy singularities in the behavior of the magne-
tization as a function of longitudinal field and moments of
the local susceptibility. In low p regions of the paramagnetic
phase, the slope a of the magnetization as a function of small
hL remains roughly constant at 1 for all values of h, but at
values below hc we found that a continuously diminished as a
function of h. Additionally, in this region, the moments of the
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FIG. 7: (a) shows plots of the moments of the local susceptibility
χn

loc shown for p = 0.5 for n ranging from 1 to 10, with smaller n
values appearing in blue and larger n values in red. All values were
computed to 10th order in the number of sites. (b) shows a series of
points where each moment dips below a selection of fixed values v,
indicating roughly where each moment begins to diverge, plotted as
a function of 1/n. As n is increased, these plots begin to curve closer
to hc.

susceptibility diverge at points h < hc, with higher moments
diverging for values of h closer to hc, indicating the presence
of tails in the probability distribution of the local susceptibil-
ity. Both of these effects evince the change in behavior when
crossing below hc in the low-p regime, demonstrating the ex-
istence of the Griffiths phase dominated by Griffiths-McCoy
singularities.
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