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Abstract

Information flow is a highly useful concept for understanding the be-
havior of systems. There have been numerous attempts to quantify in-
formation flow, but there exists confusion about the meaning of these
measures. We consider two common, though flawed measures of infor-
mation flow, time delayed mutual information and transfer entropy, and
demonstrate that it is erroneous to conflate the results given by these tools
with what one is to intuitively believe constitutes information flow. We
separate information flow into three modalities of shared, intrinsic, and
conditional. In this context, we demonstrate that time delayed mutual in-
formation and transfer entropy actually turn out to provide combinations
of shared, conditional, and intrinsic information flow, and that a third
measure is needed to fully be able to disaggregate the types of information
flow that exist within a system. We then propose a new measure, intrinsic
transfer entropy, which utilizes intrinsic conditional mutual information
from information theoretic cryptography. This provides the first concrete
method of separating information flow into its intrinsic, conditional, and
shared components. We apply intrinsic transfer entropy to a variety of
systems to demonstrate its usefulness.

This work was done at the UC Davis NSF REU in the summer of 2017.
My advisor was Professor Jim Crutchfield. I was supervised directly by Dr.
Ryan James. Pretty much all of Crutchfield’s complexity sciences center
group were very helpful in some way.
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1 Overview

Figure 1: Image credit: Thomas Schreiber [1]

Information transfer is a cool concept. Suppose you are given two spooky black
boxes both of which output time series data (as shown in figure 1). If one
can ascertain that there is information transfer between the two time series,
it follows that whatever mysterious processes are going on in the boxes one in
some way is exhibits Granger causality towards the other [2]. By kicking the
right box in this scenario, you can be absolutely certain that the time series of
the other one will in some way be influenced. All of that can be obtained with
no requirement of a model, and no undertanding of what is actually happening
inside those boxes. The tricky part lies in quantifying this notion.

Currently, the state of the art is to view information transfer as a single
entity that is measured in its entirety by transfer entropy. Recent results [3],
however, have shown that it is erroneous to conflate the results of any of the
current measures of information flow with the thing itself.

We assert that there is not one singular entity that is ‘information transfer’,
but rather three separate modalities- the combination of which can be used to
obtain the original desired definition. One purpose of this work is in part to
build on the growing body of evidence that the most correct interpretion of
information transfer is the one presented here.

2 Information

2.1 Information Theory

Shannon Entropy

H(X) = −Σpp log2 p (1)
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In Information Theory, probability distributions can be described in terms of
Shannon Entropy. Shannon Entropy is roughly the amount of information that
is required to fully describe the event. It is a quantification of the uncertainty
involved in the value of a random variable. [4]

Outcome Probability
Heads 1

2
Tails 1

2

The Shannon Entropy of the coin flip is given by
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So, given one bit of information about a coin flip, the outcome would be abso-
lutely certain. A visual representation of Shannon entropy can be seen in figure
2.

Figure 2: Since Shannon entropy corresponds to a cardinality of some set, it is
natural to visualize information entropy quantities as Venn diagrams. Here is
the Shannon entropy of one random variable X. [5]

Mutual Information Mutual Information is defined as follows

I(X : Y ) = Σx∈XΣy∈Y p(x, y) log2

p(x, y)

p(x)p(y)
(2)

Mutual information is another fundamental concept in Information Theory. It
is an aggregate quantity of two distributions that measures the ‘information
overlap’ of the two distributions. Intuitively, it measures how much knowing
one of the variables reduces uncertainty about the other.A visual representation
of mutual information can be seen in figure 3.

Outcome Probability
Heads Heads 1

2
Tails Tails 1

2
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For example, if one flipped two coins that were taped together, knowing the
outcome of one coin flip completely reveals the outcome of the second one. The
mutual information of that coin system would be 1 bit, which is the entire
uncertainty of the coin system. All of the information in this case is shared.
Alternatively, two coins that are not taped together do not inform on each
other’s outcomes at all. Therefore, their mutual information would be 0.

Figure 3: This figure demonstrates mutual information [5]

Joint Entropy

H(X,Y ) = H(X) +H(Y )− I(X,Y ) (3)

The joint entropy is the total Shannon entropy of two distributions. The formula
can be explained as follows: H(X) = H(X|Y )+I(X,Y ) and H(Y ) = H(Y |X)+
I(X,Y ) where the conditioning can be interpreted as ‘excluding’, or information
contained in X that is unique to X and unknown to Y. So, H(X,Y ) can be read
off as H(XExcludingY ) + H(Y ExcludingX) + 1 ∗ I(X,Y ).

Conditional Mutual Information

I(X : Y |Z) = Σz∈Zp(z)Σx∈XΣy∈Y p(x, y|z) log2

p(x, y|z)
p(x|z)p(y|z)

(4)

Conditional Mutual Information is the Mutual Information between two dis-
tributions conditioned on a third distribution. It is the mutual information
between X and Y ‘given’ Z. The meaning of this conditioning is oft misinter-
preted. In many cases, conditioning on a third variable reduces the entropy.
However, conditioning is not a purely a reductive operation. Conditioning can
actually induce dependence between formerly independent time series. As an
example, consider X and Y to be fair coin flips and Z to be their exclusive OR.
In this case X and Y share no information (I[X : Y ] = 0), yet given knowl-
edge of Z we know whether X and Y are equal or not, thus making X and Y
have shared information (I[X : Y |Z] = 1). This phenomenon of dependence
induced by conditioning is dubbed ‘Conditional/Synergistic Dependence’ and is
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the source of synergistic information flow in the case where we begin using con-
ditional mutual information to calculate transfer entropy. People’s unawareness
about the phenomenon of conditional dependence is part of the reason why it is
not yet well known that information flow has multiple different modalities [3].
A few of the information measures can be seen in figure 4.

Figure 4: This figure demonstrates all of the above information measures using
three random variables X,Y, and Z. [5]

Entropy Rate In a stochastic process:

h(χ) = limn−>∞
1

n
H(χ1, χ2, ..., χn) (5)

In a time series it can be thought of as: [1]

h(χ) = H(xt : xt−1xt−2...xt−∞) (6)

If the markov order, n, is finite, h(χ) only goes off up to n rather than infinity.
It is important to note that we are switching from looking at random variables
to talking about time series. Each x in this example corresponds to a different
random variable that is generated by counting methods from a time series also
called X. The entropy rate of a process is the mutual information between its
past and its present. It is the answer to the question ‘How does the entropy of
this time series increase with each new step’. Although entropy rate is mathe-
matically well defined for stochastic processes [4], what happens algorithmically
here is that the time series is broken up into up to n-length chunks which all
get turned into a distribution through counting methods, and the basic question
that gets answered is how does the entropy of the sequence grow with n. Note
that this is a function of the history length. In applying this to a time series,
we assume that it is stationary Markov process of order n. For the purposes of
this work, I have assumed Markov order 1 for the stocks and iterated prisoners
dilemma, and Markov order 7 for the random Boolean networks..
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2.2 Information Transfer

The story of information transfer starts with Time Delayed Mutual Information.

TDMI(X,Y ) = I(Xt : Yt−1) (7)

Time Delayed Mutual Information is one of the first proposed measures for in-
formation transfer, and is sadly still used today. It was very quickly replaced by
transfer entropy, and the reason for that is because it conflated synchronized,
periodic processes with causation. For instance, if time series Y was an inde-
pendent sine wave, and time series X was an independent cosine wave, time
delayed mutual information would output that X is causing Y, or vice versa.
However, this is clearly nonsensical, as we have just defined the two processes to
be completely independent of one another. So, the way to interpret the result of
TDMI is as a combination of shared flow and intrinsic flow- where shared flow
is the portion that has been contaminated by the potentially periodic behavior.

TDMI’s failure vis a vis synchronized, periodic processes prompted Thomas
Schreiber to create a new measure [1] which he called transfer entropy.

TE(X,Y ) = I(Xt−1 : Yt|Yt−1) (8)

Transfer entropy accounts for potential periodicity by conditioning on the past-
which essentially removes everything we would have known about Y just from
the past of Y alone. However, in conditioning on the Yt−1, transfer entropy in-
duces a new kind of dependence that corresponds to a synergistic [6] multivariate
information interaction. Hence, Transfer Entropy consists of a combination of
synergistic information flow plus intrinsic information flow.

Now, it is clear that if we are to disaggregate the three types of informa-
tion flow, we require a third measure. Intrinsic Transfer Entropy is that third

measure, based on intrinsic conditional mutual information from information
theoretic cryptography, it finds the minimum transfer entropy across all possi-
ble ‘fuzzings’ of the variable being conditioned on, Z. ITE detects exclusively
intrinsic information flow.

ICMI = I[X : Y ↓ Z] = min
p(Z̄|Z)

I[X : Y |Z̄] (9)

Given these three tools, we can filter out any form of information transfer
that we wish.

• Shared Information Transfer = TDMIX→Y − ITEX→Y

• Synergistic Information Transfer = TEX→Y − ITEX→Y

• Intrinsic Information Transfer = ITEX→Y
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3 Example Cases

In the examples below, we demonstrate some scenarios in which the distinction
between the modes of information flow may be of importance. All information
measures are contained in the dit python library. [7]

3.1 Information Transfer in Stocks and Indices

An index is a financial instrument that consists of stocks. It is a single entity
that is entirely determined by the combination of its constituents. Standard and
Poor’s 500, for example, is an index containing about 500 stocks. Its market
price is a weighted sum of the market prices of its constituents.

In a previous work [8], Kwon et al. measured the transfer entropy of the
time series data of discretized closing prices of stocks, and discretized closing
prices of the indices that they belong to. Instead of floating point numerical
values, the numbers 1,0, and -1 were used for when the price increased, stayed
the same, or decreased. These data spanned eight years, starting in January
2000 and ending in December 2008. Their results (shown below in figure 5)
indicate that there is an asymmetry in the transfer entropies- with the index
value driving the value of the stock more than the stock driving the value of the
index.

Figure 5: This image is credit to Kwon et al. Each data point is a particular
stock in S&P500, where the x-coordinate is the transfer entropy from stock to
index and the y-coordinate is that from index to stock. The prominent feature
of this graph is the asymmetry of transfer entropy. One possible explanation
of this phenomenon is that people looking to invest their money tend to watch
the value of the indices, rather than that of each individual stock. In this way,
it’s possible that the value of an index influences investor behavior, and as a
consequence, stock value.

Kwon and Oh concluded that there exists ‘downward causation’ in the stock-
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index system. The emergent index is more significant as a driver to the system
than its constituents.

They operated under the assumption that Transfer Entropy was equivalent
to information transfer. However, the conclusions they drew indicate that what
they were really trying to get at was what we now call intrinsic information
transfer. If, for example, the only asymmetry was in the synergistic flow- it
would be impossible to attribute these results to downward causation. So, to
test their conclusion under our interpretation of what information transfer really
is, we repeated their analysis (seen in figure 6).
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Figure 6: This is the decomposition of Kwon and Oh’s analysis into the different
modalities of information flow. It is clear that the intrinsic information flow,
the one that is conceptually closest to what Kwon and Oh seemed to be trying
to measure, is in fact even more strongly asymmetrical than presented in the
original analysis. Although these results indicate that there is in fact a strong
asymmetry in the information dynamics of stocks and indices, this asymmetry
is specifically in the intrinsic information flow. Notice, however, that the shared
flow is not asymmetrical, and that the synergistic flow appears to be asymmet-
rical in the opposite direction. In this particular scenario, the intrinsic flow is
probably the correct mode to consider- but this figure clearly shows that there
is more to information transfer than just transfer entropy. [5]

3.2 Information Transfer in Random Boolean Networks

A random Boolean network (RBN) is a collection of discrete Boolean states with
discrete time evolution. Each node in the network has a state, and a certain
number of connections drawn from a Poisson distribution for each node. The
time evolution of these nodes is determined by a random lookup table, which is
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unique to every node. At every time step, each node is updated based on the
state values of the other nodes it is randomly connected to. Since the connections
remain constant for all time steps of a particular network, the system often
enters attracting fixed points, limit cycles, and sometimes chaotic attractors
that characterize the network dynamics. An interesting feature of RBN’s is

that they undergo a phase transition from an ordered phase to a chaotic phase
as one varies the mean of the Poisson distribution (aka the connectivity) that
determines the number of connections each node has. As the network gains
connectivity, at around the 2.7 point, the dynamics of the RBN turn chaotic.
These effects can be seen in figure 7.

Figure 7: This image depicts some archetypal RBN state diagrams. The left
RBN is of connectivity value K=1. The middle network is on ‘the edge of
chaos’ [9], with a connectivity value exactly at 2.7. The rightmost network
has a connectivity value of 3, and is well into the chaotic phase. One can see,
looking from up to down, the fixed behavior of the node in a stable phase,
the somewhat periodic behavior of the critical node, and the almost entirely
unpredictable behavior of the one on the right.

Information Dynamics Lizier et al propose that global information transfer
in the RBN’s peaks at their critical connectivity values [9]. In their work,
they set up thousands of RBN’s with length 50 at various connectivity values
and evolved them for 250 time steps. They then calculated a global aggregate
transfer entropy for each network- where the state histories of 50 pairs of nodes
were randomly sampled from each network, and the sum of their transfer entropy
values was considered as a ‘Global Transfer Entropy’. It turned out that in fact

Transfer Entropy does peak at the critical value of connectivity that marks the
phase transition from ordered to chaotic. However, once again the Transfer
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Entropy tool has been conflated with the concept of information transfer. So,
we constructed some RBN’s (results seen in figure 8).

Figure 8: In the scenario of random Boolean networks, it appears that the
intrinsic information flow peaks at approximately the critical value of connec-
tivity. Therefore, the transfer entropy values consisted mostly of their intrinsic
components. So, a different interpretation of Lizier et al.’s conclusion would be
that intrinsic information flow peaks at the ‘edge of chaos’.

3.3 Future Work: Information Transfer in the Iterated
Prisoners Dilemma

The Game Iterated Prisoners Dilemma is a game where N agents are forced
to interact with each other in a specific way. The premise of the game is based
on the one turn prisoners dilemma, where the optimal strategy is famously to
defect. In IPD, what happens is that each player is entered into a tourna-
ment where one by one they are forced to play a prisoners dilemma game with
each other player for a certain number of rounds. Just like in one shot pris-
oners dilemma, their options in the game are to cooperate or defect. For each
round in a single game, the action of the first player and the action of their
opponent are input to a payoff matrix, which then assigns them points. Ul-
timately, the goal is to acquire as many points as possible during each game
with the other players in order to win the tournament. Avoiding the less
important details, the payoff matrix most commonly used with this game is

Player 2 Cooperates Player 2 Defects
Player 1 Cooperates 2,2 3,-1
Player 1 Defects -1,3 0,0
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The payoff matrix rewards the defector, just like the one shot prisoners
dilemma. However, the important feature of this game is that repeated interac-
tions incentivize long term cooperation. Therefore, there is a unique requirement
placed on would-be strategies to both attempt to cooperate while at the same
time not falling prey to other defecting players.

This game originally gained popularity when political scientist Robert Ax-
elrod hosted a public contest to submit the best strategy for this game to be
pitted against the rest of them. The winning submission in Axelrod’s original
tournament was a strategy called Tit for Tat- which very simply copied the
opponents last move. The phenomenon of cooperative strategies being success-
ful in IPD came to be known as the emergence of cooperation after Axelrod
published his book about it titled ‘The Evolution of Cooperation’. [10]

The Dynamic In this version of IPD, we create an evolutionary component
by having the lowest scoring player copy the strategy of the highest scoring
player at the end of each tournament. This way, a time series is generated of
the past strategies for each player. This is not the only type of evolutionary
dynamic that is possible within an IPD game. One popular such dynamic is
called a Moran Process, where an individual is selected stochastically based on
their score (to promote fitness of winners) every round to copy the strategy
of another stochastically selected individual. We chose not to use this process
because the non stochastic version is more intuitive, runs significantly faster,
and is not likely to change the final outcome for our purposes.

The Strategies In this experiment, we drew multiple random samples of
size 10 from a pool of approximately 200 strategies in the Axelrod library. [11]
The pool spanned all of the popular strategies, including Press and Dyson’s
Zero Determinant extortionate strategies [12], as well as more obscure ones
that came to being as a result of experimentation with genetic algorithms [13].
One instance of a typical game can be seen below in figure 9. A complete
list of strategies can be found in the documentation for the Axelrod python
library. [11].

Analysis What we did here was run the different information measures be-
tween every pair of players- where the players correspond to the columns in
figure 9. Each time series entry is a strategy that the player has at a given time
step. The results of the analysis can be seen in figure 10.
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Figure 9: This figure displays the time series of all players in a typical game.
Each color in this image corresponds to a different strategy, and each player’s
entire history of strategies becomes their time series. It appears as though in
this one, a couple of dominant strategies have taken over the game and crowded
out the others.
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Figure 10: This figure displays all of the different modalities of information
flow on a pairwise basis. First, notice how the shared and synergistic flows are
symmetric across the diagonal. This symmetry is not present in the intrinsic
flow. It is also clear that the magnitude of the shared flow is far greater than
that of the other two. This is expected, since shared flow tends to overshoot
in the presence of synchronized, periodic behavior. Another significant feature
is that only one of the players has any sort of intrinsic flow at all- the player
of index 9 that spent most of its time in the ‘Gradual’ strategy [13]. Perhaps
this indicates that the Gradual strategy is in some way more influential over the
dynamics of the game than the other players.
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4 Conclusion

In this work, we have unpacked the concept of information flow into three dis-
tinct modalities. We have demonstrated that these modalities have different
forms (such as the stocks), and may have distinct non overlapping utilities. Ul-
timately, we have substantiated James et al.’s [3] suspicion that there is neither
one unified notion of information transfer, nor a single tool that can measure it.
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