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The purpose of this project was to conduct a Fisher matrix analysis of a rotational velocity field-based model
of a weak gravitational lensing survey. This was to see how well this new model can constrain the lensing
parameters, which in turn can help constrain properties of the lensing mass. It was found that this new model
can constrain these lensing parameters to a high degree of precision along a single line of sight. Furthermore,
the amount of information in a velocity field model was plotted against redshift to determine what redshift, or
distance, would provide the most information, an important consideration for selecting good candidate galaxies
for measurement. For a lensing mass fixed at a redshift of 0.25, it was found that a source galaxy at a redshift of
0.5 contains the most signal to noise, and would therefore be the site of excellent candidate galaxies for potential
measurements using this new model.

I. INTRODUCTION

Gravitational lensing is used as a tool for cosmologists to
identify and characterize massive structures in the universe.
Since light travels slower in a gravitational potential than in
a vacuum, light from a source galaxy bends when passing
by a massive object in space, such as a galaxy cluster. This
bending causes distortions in the image. Depending on the
severity of the distortion, these changes in the image can be
classified into two categories: weak gravitational lensing and
strong gravitational lensing. Strong gravitational lensing is
classified as causing multiple imaging and distorting the im-
ages into long arcs, sometimes circles, whereas weak lensing
is classified as having minor distortions that merely change
the apparent axis ratio of the source galaxy (Bartelmann and
Narayan, 1996). See Figure 1 for examples of each. For this
project, I was solely concerned with weak gravitational lens-
ing. Weak gravitational lensing can be broken down into two
components: shear and convergence. Shear can be broken
down further into two other components, the +-component
and the x-component of shear, labeled γ+ and γx respectively.
Convergence is labeled as κ. Their effects can be best seen on
a rotational velocity field, the creation of which is described
later, which is shown in Figure 2. γ+ has an effect of stretch-
ing the major or minor axis of the ellipse while compressing
the other. γx stretches and compresses in the same way as γ+,
but on an axis system 45 degrees from the major and minor
axes. κ simply magnifies the image as a whole. An inter-
esting thing to note about γx is that it introduces asymmetry
into a symmetric velocity field, and de Burgh Day (2015) cov-
ers how that asymmetry alone can be used to constrain γx.
Lensing surveys use the degree of distortion of a background
galaxy to determine features of the lensing mass itself, such as
its location or mass. The traditional model averages over the
images (not the velocity fields) of thousands of background
galaxies in a section of the sky to find a bias towards any spe-
cific alignment. This works under the assumption that such
a bias does not exist in an isotropic universe, and is instead
the result of gravitational lensing. In this paper I introduce
a new model for the gravitational lensing survey which relies

FIG. 1: Here are examples of strong and weak lensing. In the top
image, the arc-like streaks are images of strongly lensed galaxies
circling around the center of the galaxy cluster. In the bottom image,
the lensed galaxy is distorted, but still maintains its elliptical shape.

on studying the weak lensing effects on the rotational velocity
field of a galaxy. The goal of this project is to perform a Fisher
matrix analysis on this new model for weak lensing surveys
to see how well implementing this new model can constrain
the weak lensing parameters when compared to the traditional
weak lensing method.



2

FIG. 2: The effects of the different components of weak lensing are
depicted here. The +-component of shear, γ+, stretches and com-
presses the major and minor axes, while the cross component of
shear, γx, stretches and compresses an axis system 45 degrees from
the major and minor axes. Convergence, κ, magnifies the image.

II. THEORY

The Fisher matrix is a mathematical tool for calculating the
smallest variance achievable in each of the parameters in a
given model. When applied to a physical model, the Fisher
matrix becomes a powerful tool for designing experiments,
as it only relies on a model of the data. This allows for the
creation of a sort of metric which a new model can be judged
upon before any measurement takes place. As described in
D.Wittman (2015), for n model parameters and b observables
that relate the parameters, the Fisher matrix is an nxn matrix
with elements:

Fij =
∑
b

1

σ2
b

∂fb
∂pi

∂fb
∂pj

Where σb describes the measurement error in each observ-
able. This formula quantifies the amount of information in a
model. The use of derivatives in the formula signify that the
more prone an observable is to change, the more information
it contains, which directly leads to better constrains. This oc-
curs because of a unique property that the Fisher matrix has,
which is that its inverse produces the covariance matrix, as
seen in Figure 3. A covariance matrix lists the variances of
each model parameter along the main diagonal, as well as the
covariance between each pair of model parameters on the cor-
responding off-diagonal element. This information can then
be used to understand how well employing a certain model
can constrain the parameters of interest. It is important to note
here that the Fisher matrix does not provide information on
how to take measurements of the model to obtain these con-
straints, and that the constraints are a result of the information
contained within the model itself. For more information on
Fisher matrices, see D. Wittman (2015). Because the Fisher

FIG. 3: A covariance matrix lists the variances of parameters p1...pn
along the main diagonal, and the covariances between corresponding
pairs of parameters on the off-diagonal.

matrix looks at the behavior of the parameters to quantify the
amount of information a model contains, it also becomes nec-
essary to include “nuisance” parameters in the model. These
parameters have a significant influence on the lensing param-
eters in question, but provide no insight into the properties of
the lensing mass. A good example here is the parameter θ,
or the angle of inclination the source galaxy has with respect
to the line of sight. Assuming an angle of 0 radians means
viewing the galaxy edge-on, the larger the angle, the lesser
the amount of velocity is contained in each pixel of the veloc-
ity field. However, an angle of 0 radians means that the rota-
tional velocity lies entirely within the line of sight, but con-
tains the minimum number of pixels. This affects the amount
of information in the velocity field model because the amount
of velocity in a single pixel represents an observable for our
Fisher matrix analysis. Therefore, the more velocity per pixel
means more information, while at the same time the more pix-
els means more observables, which further means more infor-
mation. This tradeoff of information requires θ to be consid-
ered in our model. By the same notion, the maximum amount
of rotational velocity of the galaxy, vmax, must also be consid-
ered in the analysis. The last of these “nuisance” parameters
is r0, which represents the radius at which the velocity curve
begins to stop increasing rapidly and level out, which has a
significant effect on the amount of velocity per pixel. This
means that our Fisher matrix analysis models 6 parameters,
each of which contributes to the amount of velocity per pixel:
γ+, γx, κ, θ, vmax, and r0. Since the Fisher matrix utilizes the
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information contained within a specific model, the following
question can be asked. What model contains the most infor-
mation, and would therefore present the tightest constraints
on our parameters? The answer in our context depends on
the distance, or redshift, of the background galaxy itself. The
larger the source redshift, the more distorted the image be-
comes after passing through the lens, but the smaller the image
becomes. The smaller the redshift, and therefore the closer the
source is to the lens, the less pronounced the lensing effects
are, but the larger the observed size of the image becomes.
Furthermore, the amount of information contained within a
given model is also dependent on signal to noise, or the ratio
of how much of the data is due to the parameters in question
versus measurement errors. As an example, while the center
of a galaxy is typically well-resolved, the edges of a galaxy
are more prone to measurement errors. This signal to noise
ratio can then be used as a metric to how much information
a model contains with respect to the parameters in question.
Therefore, while doing this Fisher matrix analysis, it is also
important to consider what models contain the most informa-
tion, and would therefore make the most suitable candidates
for future measurements. In this project I also include an anal-
ysis of the relationship between signal to noise and redshift in
our results.

III. CONSTRUCTING THE FISHER MATRIX

The bulk of this project was designing a model for velocity
field-based weak gravitational lensing surveys, and plugging
in the relevant information into the Fisher matrix to see how
well this model can constrain its parameters. The first step in
doing so was to design a model of the velocity field itself. In
our model, I assumed a thin disk galaxy with a symmetrical
velocity field. To measure the velocity field of a galaxy, there
must be a component of velocity along the line of sight. This
allows for the Doppler Effect to create a blueshift and a red-
shift depending on whether the pixel in consideration has a
velocity away or towards the viewer. If the galaxy is viewed
face-on, with no component of rotational velocity along the
line of sight, then no Doppler Effect can be observed, and the
velocity at each pixel would be seen as a constant value across
the body of the galaxy. This means that the galaxy itself must
be inclined with respect to the line of sight for its velocity
field to contain rotational velocity data. Because of this, the
2-dimensional representation of the velocity field appears el-
liptical, like the one depicted in Figure 4, despite considering
a circular galaxy. When calculating the velocity of the galaxy
at each pixel, the Universal Rotation Curve (URC) was used
to simulate as realistic of a velocity curve as possible (thanks
to Bryant Benson for providing the code). Furthermore, the
three nuisance parameters, θ, vmax, and r0 were used in con-
structing the velocity field model.

The next step in the model was to apply the weak lensing
effects to the velocity field. As noted previously, these effects
can be broken down into three components: the two compo-
nents of shear (γ+,γ ) and convergence (κ). Their effects on
the velocity field mapping can be described by the following

transformation (De Burgh Day, 2015)[
1− κ− γ+ −γ

−γ 1− κ− γ+

] [
x
y

]
This transformation was implemented into the Python code

by shearing the grid itself, then interpolating the values of
each pixel of the original grid onto the sheared grid. Af-

FIG. 4: The modeled symmetric velocity field of a disk galaxy. The
top half of the ellipse is traveling towards the observer along the line
of sight, while the bottom half is traveling away from the observer
along the line of sight.

ter these transformations were applied to the original velocity
field, the next step was to begin calculating the Fisher matrix.
In order to do this, numerical derivatives had to be calculated
for each observable with respect to each parameter. In this
model, the observable was the velocity at each pixel, and the
parameters were the three lensing parameters and the three
nuisance parameters. To calculate the numerical derivative, I
wrote Python code to build a velocity field with certain values
of the nuisance parameters, then, in the case of the nuisance
parameters, build another velocity field with a slightly differ-
ent value of one of the parameters. In the case of the lensing
parameters, I applied the transformation to the original ve-
locity field, then again with a slightly different value of one
of the lensing parameters. Taking the difference between the
two fields pixel-wise led to the creation of the residual fields,
all of which can be seen in Figure 5.

To make the model more realistic, I implemented a smooth-
ing process to represent the Point Spread Function, since the
galaxy itself can be modeled as a point source of light to a tele-
scope. This leads to some measurement error. To model this,
I took the residual field from each of the numerical derivatives
and applied a Gaussian filter over the field, “smoothing” out
the pixel values to create a more continuous velocity field. Af-
terwards, I divided each smoothed field by the change in the
corresponding parameter pixel-wise to obtain the numerical
derivative of each pixel of velocity. Then, to further simulate
measurement error, I constructed an uncertainty field that was
populated by the following function:
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FIG. 5: Lineup of all of the transformations of the velocity field with respect to the different parameters considered in this project. Below is
the corresponding residual field when subtracted from a velocity field with a slightly different value of the corresponding parameter. Here, the
color blue represents a velocity away from the viewer, and yellow represents a velocity towards a viewer. Green represents lesser values of
velocity.

σ = e
3∗r

2∗rmax

where r is the distance from the center of the ellipse to a given
point, and rmax is the distance from the center to the farthest
point on the ellipse. The error is described by an exponential
function because the center of the galaxy is well-resolved and
provides good data, while the edges of the galaxy are less re-
solved and defined and contain more noise in the data. The
derivative fields and the error field were then plugged into the
Fisher matrix equation pixel-wise (since each pixel is consid-
ered a separate observable), and the resulting matrix was in-
verted to obtain the covariance matrix.

The second part of the project involved creating the sig-
nal to noise versus redshift graph to figure out what candidate
galaxies would contain the most information and would there-
fore be the most suitable candidates for this new model. To
accomplish this, the lensing mass was established at redshift
0.25. The source galaxy was then moved back in intervals of
0.1 redshift starting from a redshift of 0.3. At each interval,
the Fisher matrix and covariance matrix were calculated to ob-
tain the variance in each of the lensing parameters. The square
root of these variances represented the noise in our model. I
then calculated the signal by the following formula:

signal =
Dls

Ddiameter

where Dls is the distance between the lens and the source,
and Ddiameter is the angular diameter distance of the source
galaxy. However, distances on the cosmological scale have
special circumstances to take into consideration. Since the
universe is constantly expanding, distances in one instance of

time are different from those in another instance. Cosmolo-
gists have worked around this by defining comoving and angu-
lar diameter distances. Comoving distances between objects
are distances that remain constant if the objects were moving
at the same rate the universe is expanding. That is, distances
that are measured in the same time. Angular diameter dis-
tances, which are used to measure an object’s size, are a ratio
of the object’s transverse size to its angular size, as described
by D. Hogg (2000). Since these values are dependent on the
redshift of objects relative to each other, and since the redshift
from the lensing mass to the source galaxy is unknown, I first
had to find Ds and Dl, as shown in Figure 6. To calculate

FIG. 6: This is the lens diagram considered in this project. When
constructing the signal to noise versus redshift graph, the distance
between lens and observer (Dl), the distance between source and
observer (Ds), and the distance between lens and source (Dls) are
considered.

Ds and Dl, I used the astropy.comoving distance function
with an astropy.F latLambdaCDM object. From these val-
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ues, I calculated Dls with the following formula (taken from
the full formula in Hogg (2000) and simplifying to a flat uni-
verse):

Dls =
Ds −Dl

1 + zs

where zs represents the redshift of the source galaxy.
These distances were calculated for each redshift of
the source galaxy, then divided by the angular di-
ameter distance of the source galaxy (calculated using
astropy.angular diameter distance) to obtain the signal.
The signal was then divided by the noise of each of the three
lensing parameters and plotted as a function of redshift.

IV. RESULTS

The covariance matrix obtained from the process outlined
above is best depicted graphically. The graph obtained from
the covariance matrix is seen in Appendix 1, and is in the form
of a corner plot, which is a type of graph that plots a set of
parameters with itself pairwise. Within each subplot is a con-
fidence ellipse, which visually depicts the constraint of each
parameter, along with the qualitative qualities of the covari-
ance between each parameter. As seen in Figure 7, the width
and height of the ellipse depict the constraint of each param-
eter. As such, all of the ellipses in each row or column have
the same height or width, respectively. The angle of the confi-

FIG. 7: The r0 versus γ+ subplot of the corner plot in Appendix 1
shows an example confidence ellipse. The width of the ellipse shows
the constraint on γ+ if it had a value of 0.075. The height of the
ellipse shows the constraint on r0 if it had a value of 0.5. The angle of
the ellipse shows that the two parameters have a positive covariance,
meaning that an increase in r0 would see a subsequent increase in
γ+

dence ellipse is also a visual representation of the relationship
between those two variables, defined by their covariance. An
ellipse that has a positive slope indicates a positive covariance,
which means that an increase in one of the parameters would
cause a subsequent increase in the other parameter. On the
other hand, an ellipse with a negative slope would indicate a

negative covariance, meaning that an increase in one of the pa-
rameters would cause a subsequent decrease in the other. The
histograms along the main diagonal of the corner plot show
how one standard deviation of each of the parameters lines up
with all of the data. With that being said, the results of the
Fisher matrix analysis reveal the following constraints on the
lensing parameters using the velocity field model:

Parameter Actual Value Constraint
γ+ 0.075 ± 0.0375
γx 0.075 ± 0.0075
κ 0.1 ± 0.1

While these constraints are optimistic because the Fisher es-
timate is the best-case scenario, they do provide a benchmark
with which I can compare models. Typical Fisher matrix anal-
yses of traditional photometric methods of lensing surveys re-
veal that the old model contains enough information to con-
strain each component of shear to about ±0.2, and contains
even less information about convergence. This means that the
new velocity field model is ∼10x better at constraining these
values per galaxy. The traditional method makes up for this
by averaging over thousands of galaxies in the night sky. One
particularly interesting thing to note here is that the constraint
on γx is tighter than the γ+ constraint, while in the old model,
they are equivalent. This could be a result of the asymmetry
introduced into the symmetrical velocity field by γx, which
would provide more information, and therefore a better con-
straint, on γx While this new model provides ∼10x better
constraints per galaxy, it is critical to select good candidate
galaxies that provide data equivalent to the model data. As
described above, this is best done by looking at the signal to
noise versus redshift graph, as pictured in Figure 8. Depicted
here is the ratio of signal to noise, or how much information
can be separated from measurement error, as a function of the
redshift, or how far the source galaxy is from the observer,
for all of the weak lensing parameters. As can be seen from
the graph, a redshift of about 0.5 (relative to a lens fixed at
redshift 0.25) contains the highest ratio of signal to noise for
all of the parameters. This means that galaxies at this redshift
would have the most information for all of the lensing param-
eters, meaning that they would be the most suitable candidates
for measurement.

V. CONCLUSION

In this project, I conducted a Fisher matrix analysis of a new
rotational velocity field model of weak gravitational lensing
in order to see how tightly it could constrain the weak lensing
parameters, γ+, γx, and κ. The analysis showed that galax-
ies with this new model can constrain the lensing parameters
10x better than the traditional photometric method. However,
since photometric data are cheaper and less time-consuming
to take than velocity data, it is important to note that this new
model will not serve as a replacement to the standard photo-
metric lensing surveys. Instead, it can serve as a supplemen-
tary method to further explore interesting lensing masses and
further constrain their properties.
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FIG. 8: The signal to noise versus redshift graphs for each of the lensing parameters. All of the three graphs peak at a source galaxy redshift
of 0.5 with respect to a lens redshift at 0.25. This means that galaxies at these distances would contain the most information under the velocity
field model, and would be suitable candidates for measurements.

Furthermore, I showed that source galaxies with the most
information in this new model would occur at a redshift of
0.5 for all of the weak lensing parameters, assuming a fixed
lensing mass at redshift 0.25. Since taking velocity data is
more expensive and time consuming, this result helps narrow
down the field of potential candidate galaxies to ensure that if
a measurement is taken, a galaxy with a good signal to noise
ratio is chosen.

VI. FUTURE WORK

The future for this project is to continue adding realism to
the current model. Current plans are to incorporate informa-

tion from the photometric field into the model, as proposed
by Huff et al. (2013). Another plan is to go beyond forecast-
ing the precision, and actually construct the method by which
shear and convergence can be inferred.
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FIG. 9: The corner plot resulting from the Fisher matrix analysis of
the rotational velocity field model of weak gravitational lensing.


