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Abstract	
𝛽-solenoid	proteins	are	exceptionally	strong	biopolymers,	so	measuring	their	bulk	mechanical	
properties	 is	 useful	 for	 ascertaining	 their	 viability	 for	 biomaterials	 application.	 I	 have	
computationally	 engineered	 a	 protein	 lattice	 by	 covalently	 binding	 the	 𝛽-solenoid	 spruce	
budworm	antifreeze	protein,	SBAFP,	(1M8N)	and	the	symmetric	archaeal	protein	(3VR0)	into	a	
2-dimensional	square	geometry.	Periodic	boundary	conditions	were	applied	to	the	unit	cell	to	
form	an	infinitely	repeating	lattice	and	implicit	waters	were	simulated	to	eliminate	the	solvent	
strain	from	the	results.	Utilizing	molecular	dynamics	(MD)	software,	stress	was	applied	to	the	
system	and	computed	as	 twice	 the	difference	between	 the	virial	 and	kinetic	energy	over	 the	
volume	of	the	simulation	cell.	The	elastic	region	of	stress-strain	curves	was	evaluated	to	obtain	a	
bulk	modulus	of	6.44-10.71	GPa	and	 shear	modulus	of	2.41-5.14	GPa	over	a	 range	of	pulling	
velocities,	500-1500	m/s.	The	calculated	material	strength	of	the	engineered	2-D	protein	lattice	
is	comparable	to	that	of	spider	silk	and	much	greater	than	that	of	bacterial	S-layers.	
	
Introduction	
Naturally	occurring	protein	lattice	structures	called	bacterial	S-layers	have	been	discovered	on	
the	surface	of	bacteria	and	modified	for	application	as	nanoscale	biomaterials	and	devices6.	Once	
removed	 from	 the	 surface	of	bacteria	 they	will	 reassemble	 in	 solution	and	adhere	 to	various	
surfaces.	 The	 first	 application	 of	 these	 S-layers	 was	 in	 the	 production	 of	 ultrafiltration	
membranes	with	molecular	sieving	properties1.	By	fusing	deliberate	functional	domains,	the	S-
layers	have	proven	useful	in	a	multitude	of	biotech	applications	from	drug	delivery	systems	to	
biochip	 development.	Motivated	 by	 the	 promise	 that	 these	 naturally	 occurring	 S-layers	 have	
shown,	we	have	developed	a	method	for	the	design	of	protein	 lattice	geometries	that	can	be	
willfully	and	precisely	manufactured	with	nanoscale	precision.	The	advantage	of	this	bottom	up	
engineering	approach	allows	for	tunable	mechanical	and	functional	application.		
	
The	development	of	highly	customizable	materials	and	devices	using	molecular	building	blocks	is	
a	 prominent	 research	 area	 in	 nanotechnology,	 but	 remains	 a	 somewhat	 elusory	 objective.	
Biological	lattices	that	act	as	platforms	ornamented	with	functional	domains—called	decorated	
bioscaffolds—are	of	interest	for	biomedical	and	environmental	applications	like	biodegradable	
templates	 for	 synthesizing	 inorganic	material	 or	 carrying	 biomolecular	 cargo;	 biosensors	 and	
probes;	and	molecular	sieves10.	While	synthetic	materials	can	be	utilized,	we	choose	to	exploit	
the	self-assembly	and	existing	nano-structures	of	proteins	to	construct	tailored	lattices.	
	
In	 particular,	 we	 investigate	 a	 class	 of	 mechanically	 and	 environmentally	 robust	 protein	
aggregates	called	𝛽-solenoids.	Their	tertiary	structure	forms	a	rigid,	rod-like	structure	reinforced	
by	 interior	 hydrophobic	 packing	 and	 a	 secondary	 structure	 composed	 of	 hydrogen	 bonds	
connecting	 its	 coil-like	 layers3.	 This	 robustness	 allows	 them	 to	 remain	 folded	 against	



perturbations	 like	 the	 addition	 of	 protein	 denaturant,	 uric	 acid,	 extreme	 temperatures,	 and	
sequence	 modifications4.	 The	 ability	 to	 create	 decorated	 scaffolds	 is	 dependent	 on	 the	
maintenance	of	the	𝛽-solenoid’s	stable,	folded	structure	with	the	implementation	of	accessory	
functional	groups	to	the	original	amino	acid	sequence.	This	property,	in	addition	to	the	hydrogen	
bonding	 network	 that	 allows	 for	 the	 self-assembly	 of	 individual	monomers	 into	 long	 protein	
fibrils,	 make	 𝛽-solenoids	 ideal	 candidates	 for	 the	 molecular	 scaffold	 structures	 used	 in	
bionanotechnology.	
	
As	 computational	 modeling	 methods	 for	 large	 and	 complex	 systems	 have	 improved	 and	
technologies	 in	 engineered	 biomaterials	 grows,	 the	 accuracy	 and	 value	 of	 these	 simulation	
models	have	increased	to	better	complement,	predict,	and	demonstrate	experimental	work	in	
developing	 these	 biomaterials.	 Experimental	 techniques	 including	 protein	 expression,	
purification,	and	characterization	take	significant	time	and	resources	that	can	be	reduced	with	
the	 employment	 of	 computational	 methods.	 Using	 downloadable,	 virtual	 proteins	 has	 the	
advantage	of	variation	and	accessibility	that	is	limited	by	experiments	performed	in	a	lab.	While	
simulation	procedures	simplify	realistic	conditions,	they	still	provide	predictive	results	that	can	
inform	experimentalists	on	how	 to	modify	 their	protein	 system	 for	optimal	performance	and	
produce	approximate	values	for	quantitative	analysis.	Each	of	the	system’s	atoms	in	the	all-atom	
simulations	 used	 is	 tracked	 at	 every	 femtosecond	 time	 step	 which	 allows	 for	 a	 detailed	
assessment	of	 the	 system’s	properties.	 In	 this	 investigation,	 the	mechanical	properties	 that	a	
bioscaffold	with	square	geometry	composed	primarily	of	𝛽-solenoids	is	expected	to	exhibit	are	
extrapolated	from	simulated	stress-strain	measurements.		
	
Methods	
SYSTEM	
The	protein	used	as	the	 linker	for	the	protein	 lattice	unit	 is	an	archaeal	proteasome	activator	
from	Pyrococcus	furiosus,	(Protein	Data	Bank	code	3VR0).	It	is	a	hyperthermophile;	therefore,	it	
can	withstand	extremely	high	temperatures	upwards	of	100	degrees	Celsius.	It	has	a	four-fold	
rotation	axis—C4	symmetry—which	is	ideal	for	tiling	a	square	lattice	(Figure	A).	The	protein	used	
as	the	arms	of	the	unit	is	a	beta-solenoid,	SBAFP	(PDB	code	1M8N),	which	has	a	triangular	cross	
section	and	a	 rod-like	 tertiary	 structure	 resulting	 from	 the	hydrogen	binding	of	 its	 secondary	
structure	(Figure	B).	Wild-type	SBAFP	contain	a	capping	region	that	prohibits	fibrilization	which	
has	been	removed	so	that	fibrilization	can	occur.	The	resulting	covalently	bound	unit	is	composed	
of	two	linkers	and	eight	SBAFPs	as	depicted	in	Figure	C.	
	

			 		 	
*The	N-	and	C-termini	of	the	proteins	have	been	labeled	accordingly	in	Figures	A	and	B	
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Due	to	the	hydrogen	bond	network	of	the	𝛽-solenoids,	there	is	a	preferential	N-terminus	to	C-
terminus	binding	directionality	 for	 assembly	 that	prohibits	 alternative	binding	 configurations.	
Therefore,	the	N-terminus	of	each	𝛽-solenoid	must	be	covalently	bound	to	the	C-terminus	of	one	
protein	 linker.	 	The	C-terminus	of	the	𝛽-solenoid	 is	then	free	to	covalently	 link	to	the	nearest	
exposed	N-terminus	of	another	𝛽-solenoid	and	the	C-terminus	of	that	𝛽-solenoid	is	covalently	
bound	to	the	N-terminus	of	another	linker	protein.	Thus,	in	addition	to	its	symmetry,	the	linker	
protein	was	chosen	because	of	its	terminal	accessibility	as	labeled	in	Figure	A.	
	
MEASUREMENTS/CALCULATIONS	
To	quantify	the	material	strength	of	the	square	protein	lattice,	it	was	subjected	to	stress-strain	
simulations	in	which	it	underwent	bulk	and	shear	deformation	to	determine	its	corresponding	
elastic	moduli.	This	section	reviews	the	definitions	of	stress	and	strain	and	details	bulk	and	shear	
deformation.	
	
Stress	describes	a	material’s	response	to	an	applied	strain.	Stress	has	the	units	of	pressure	as	it	
is	defined	by	an	applied	force	over	a	change	in	cross-sectional	area	or	equivalently,	energy	per	
unit	 volume.	 To	 determine	 the	 stress	 tensor	 of	 a	microscopic	 ensemble,	 the	 energy	 density	
interpretation	is	used	in	which	the	derivative	with	respect	to	strain	is	found	for	the	combined	
kinetic	and	potential	energies	per	unit	volume,	accounting	for	the	contribution	of	each	individual	
atom	in	the	ensemble.	The	stress	tensor,	𝜎,	is	pictorially	described	by	Figure	1	and	is	represented	
as	follows:		
	

	
	 	 				Figure	1:	Stress	tensor	in	3-D	

	
Strain	describes	the	magnitude	of	deformation	or	a	ratio	of	displacement	 in	the	dimension	of	
deformation	to	the	original	dimension.	For	instance,	the	amount	of	strain	on	a	1-D	rod	of	length	
L	under	deformation	conditions	that	result	in	a	displacement	of	DL	would	be	expressed	as	DL/L.	
Strain	is	typically	dimensionless	and	is	expressed	as	a	percent.	The	strain	tensor	is	mathematically	
defined	as	the	symmetric	sum	of	derivatives:	
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Shear	is	a	type	of	strain	described	as	the	lateral	deformation	of	a	material.	The	simulated	shearing	
(volume-conserving)	can	be	illustrated	by	the	following	deformation	map	in	which	the	solid	line	
represents	the	original	configuration	of	the	material,	the	dotted	outline	representing	its	resulting	
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configuration,	 and	 sides	 a	 and	 b	 representing	 the	material’s	 x	 and	 y	 positions,	 respectively:	

	
Figure	2:	Shear	deformation	map	
The	strain	tensor	mathematically	is	represented	by:	

	
	
	
	
	
	
	
	
Bulk	is	a	type	of	strain	described	by	the	uniform	deformation	of	a	material.	The	simulated	bulk	
deformation	is	described	by	Figure	3	in	which	the	solid	line	represents	the	original	configuration	
of	 the	material,	 the	dotted	outline	 representing	 its	 resulting	configuration,	and	sides	a	and	b	
representing	the	material’s	x	and	y	positions,	respectively:	
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Figure	3:	Bulk	deformation	map	
The	bulk	strain	tensor	is	mathematically	represented	by:	
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The	coordinates	are	transformed	as	follows,	in	
which	the	primed	values	represent	the	
coordinates	resulting	from	shear	deformation:	
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The	coordinates	are	transformed	as	
follows,	in	which	the	primed	values	
represent	the	coordinates	resulting	
from	bulk	deformation:	
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For	small	deformations,	stress	is	linear	in	strain	and	this	linear	region	defines	the	material’s	elastic	
response,	which	is	described	by	its	elasticity	tensor,	C,	where	i,j,k,l	index	x,y,z:	

	
𝜎$% = 𝐶$%GF𝜖GF 	 	 	 	 	 	 (4)	

	
For	the	2-dimensional	square	lattice,	the	elasticity	tensor	is	mathematically	represented	by:	
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SOFTWARE/SIMULATION	
The	 visual	molecular	 dynamics	 graphics	 software,	 VMD,	was	 utilized	 to	 identify	 the	N	 and	 C	
termini	of	the	linker	and	𝛽-solenoid	proteins.	Visual	representations	of	the	protein	lattice	as	well	
as	the	molecular	dynamics	simulations	produced	in	GROMACS	were	created	with	VMD.		
	
YASARA,	a	molecular	graphics,	modeling	and	simulation	software	program,	was	used	to	remove	
the	caps	from	the	𝛽-solenoids	and	covalently	bind	the	unit	illustrated	in	Figure	C.	The	PDB	protein	
structure	coordinates	were	uploaded	to	this	software	and	aligned	with	a	C++	scripted	template	
to	create	a	uniform	tiling	pattern	for	the	2-dimensional	square	lattice.	
		
Non-equilibrium	pulling	simulations	were	used	to	probe	the	mechanical	properties	of	the	protein	
lattice.	 GROMACS	 4.6.7	 is	 the	molecular	 dynamics	 software	 package	 used	 to	 conduct	 all	 the	
simulations.	The	Parinello-Rahman	barostat	was	used	for	anisotropic	pressure	coupling	whose	
matrix	equation	of	motion	is8:	
	

c𝒃e
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Where	b	is	the	simulation	box	matrix,	V	is	the	simulation	box	volume,	W	is	a	parameter	matrix	
that	 controls	 the	 coupling	 strength	 and	 box	 deformation	 restrictions,	 and	P	 and	Pref	are	 the	
current	 and	 reference	 pressure	 matrices,	 respectively.	 The	 isothermal	 compressibility	 in	 the	
directions	 transverse	 to	 the	 strain	 were	 set	 to	 that	 of	 water,	 4.5	 x	 10-5	 bar-1	 and	 along	 the	
directions	of	the	applied	strain	(i.e.	the	plane	of	the	lattice)	were	set	to	zero	to	prevent	coupling	
to	the	pressure	bath.	The	reference	pressure	was	set	to	1	bar.	The	Nose-Hoover	thermostat	was	
used	for	temperature	coupling	to	maintain	a	constant	temperature	of	300	Kelvin.		
	
The	 protein	 unit	 (Fig	 C)	 is	 placed	 in	 a	 triclinic,	 simulation	 box	 with	 side	 lengths	 and	 angles	
measured	to	tile	the	lattice	in	the	x	and	y	directions.	The	box	dimensions	include	a	1	nm	spacing	
(i.e.	larger	than	the	long-range	interaction	radii)	between	its	edges	and	the	protein	unit	to	ensure	
no	interaction	between	periodic	images.	Then,	periodic	boundary	conditions	are	applied	to	all	
boundaries	of	the	box	to	form	an	effectively	infinite	lattice.	The	system	is	then	solvated	in	three-
point	simple	point	charge	water,	annealed,	equilibrated,	and	put	through	production.		
	



Production	occurs	as	strain	is	applied	to	the	system	by	increasing	the	box	length	at	a	constant	
rate.	 The	 inter-atomic	 forces	 account	 for	 the	 initial	 atomic	 coordinates	 and	 then	 over	 each	
integration	 time	 step	 in	 the	 simulation	 the	 velocities	 and	 atomic	 coordinates	 are	 updated	
according	to	temperature	and	pressure	coupling,	 respectively.	The	simulation	software	solves	
Newton’s	equations	of	motion	for	the	large-scale	system	and	using	velocity	pulling	within	a	force	
field—in	 this	 case	 the	 OPLS-AA	 (all-atom)	 force	 field	was	 used	 for	 all	 simulations—produces	
trajectories	from	which	the	stress-strain	relationship	is	obtained.	GROMACS	provides	values	for	
the	 pressure	 at	 each	 time	 step	 of	 production	which	 is	 used	 to	 determine	 the	 stress	 and	 the	
percent	strain	is	set	pre-production.	Stress-strain	curves	are	generated	to	quantify	elasticity	or	
material	strength.	
	
Results	and	Discussion	
The	elastic	modulus	is	extrapolated	from	the	slope	of	a	linear	regression	of	stress	plotted	versus	
strain.	A	model	stress-strain	curve	is	depicted	in	Figure	4.		
	

	
	
Figure	4:	Typical	stress-strain	curve	
	
A	 stress-strain	 curve	 resulting	 from	 a	 typical	 simulation	 is	 illustrated	 in	 Figure	 5.	 A	 linear	
regression	was	applied	to	points	corresponding	to	less	than	1%	bulk	strain	and	less	than	0.5%	
shear	strain.	All	elastic	moduli	measurements	for	the	2-D	square	lattice	are	shown	in	Figures	6	
and	7,	which	 span	over	 speeds	 ranging	 from	500	 to	1500	m/s	and	are	 values	averaged	 from	
measurements	 obtained	 from	 four	 different	 equilibrium	 starting	 points.	 The	 square	 lattice	
exhibits	greater	resistance	to	deformation	at	higher	pulling	velocities,	which	corresponds	to	the	
results	of	numerous	materials	studies.	It	is	noted	that	the	relationship	between	elastic	modulus	



and	velocity	 is	 linear	over	 the	 range	of	pulling	velocities	used.	Also,	 that	 the	bulk	moduli	 are	
around	twice	that	of	the	shear	moduli,	indicating	that	the	lattice	is	more	capable	of	withstanding	
isotropic	changes	in	pressure	than	it	is	to	parallel,	anisotropic	deformation.	
	

	
Figure	5:	Linear	 regression	 for	 the	bulk	modulus	at	a	1%	strain	and	pulling	velocity	of	1100	
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Figure	6:	Bulk	modulus	vs	pulling	velocity	of	the	square	protein	lattice	at	a	1%	strain	

	

	
Figure	7:	Shear	modulus	vs	pulling	velocity	of	the	square	protein	lattice	at	a	0.5%	strain	

To	 assess	 the	material	 strength	 of	 the	 square	 protein	 lattice,	 Table	 1	 provides	 some	 context	
comparing	the	elastic	moduli	to	that	of	various	elastomers.	Although	the	mechanical	strength	of	
these	proteins	does	not	rival	materials	like	Kevlar	and	fiberglass,	it	does	exceed	that	of	materials	
like	 rubber,	 chitin,	 and	 the	 bacterial	 S-layers	 found	 in	 nature.	 Its	 mechanical	 strength	 is	
comparable	to	that	of	spider	silk	which	is	composed	of	mostly	𝛽-solenoids	and	𝛽-sheets.	
	
Table	1:	Mechanical	moduli	of	conventional	materials	for	context	

Material	 Bulk	Modulus	(GPa)	 Shear	Modulus	(GPa)	

Kevlar5	 71-112	 2.8-4.1	

Fiber	Glass5	 43-50	 30-36	

N.	Clavpipe	spider	silk9	 12.71	 2.38	

Square	Protein	Lattice	 6.44-10.71	 2.41-5.14	

Vulcanized	Rubber5	 2.7	 0.005	

Chitin/Chitosan7	 0.350-0.421	 0.198-0.217	

Bacterial	S-layers2	 0.006	 0.002	
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Conclusion	
Simulated	 stress-strain	 curves	 have	 been	determined	 for	 a	 2-D	 square	 protein	 lattice	 system	
using	the	molecular	dynamics	software	program	GROMACS.	With	this	method,	the	values	for	the	
bulk	and	shear	tensors	were	evaluated	and	substantiate	the	𝛽-solenoid	based	protein	lattice’s	
appreciable	mechanical	 strength	 given	 that	 stresses	 encountered	by	biological	 systems	occur	
between	the	0.1	and	1	GPa	range.	These	results	support	the	premise	that	when	assembled	into	
two	 or	 three-dimensional	 lattice	 structures,	 these	 proteins	 make	 promising	 candidates	 as	 a	
viable,	robust	foundation	for	creating	novel	biomaterials.	
	
Future	work	
To	determine	 if	 this	𝛽-solenoid	 protein	 lattice	would	 be	 a	 viable	 biosensor	 it	 is	 necessary	 to	
calculate	the	piezoelectric	tensor.	This	would	require	velocity	pulling	while	measuring	the	change	
in	 the	 electric	 dipole	moment	 of	 the	 lattice.	 Pulling	will	 simulate	 the	 conformational	 change	
induced	by	a	binding	event	of	an	antigen	to	its	corresponding	antibody	which	would	be	attached	
via	 functionalized	 loops	 bound	 to	 the	 scaffold-like	 protein	 lattice.	 The	 magnitude	 of	 the	
piezoelectric	 tensor	would	 dictate	whether	 binding	 to	 the	 lattice	would	deform	 it	 enough	 to	
generate	 a	 significant—measurable	 and	 distinguishable—voltage.	 This	 would	 have	 potential	
application	for	cheap	and	compact	disease	detection	devices.	Furthermore,	we	will	investigate	
the	 role	 of	 geometric	 shape	 in	 mechanical	 performance	 by	 performing	 stress-strain	
measurements	on	other	lattice	geometries	such	as	oblique	and	hexagonal,	which	are	found	in	
nature.	
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