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The Szilard engine is a hypothetical device that extracts work through the physics of Maxwell’s
demon. Through the exchange of information and thermodynamic entropy, it presents a functioning
system that seemingly violates the second law of thermodynamics. Through an analysis of how
the demon’s memory plays into the physics of the engine, however, we can see that the second law
is not so easily transgressed. This report presents the Szilard map, one of such analyses, as well
as my extensions on it. My application of the Szilard map into a multi-particle Szilard engine is
demonstrated, and a fractal dimensional analysis of the single-particle Szilard map is discussed.

I. INTRODUCTION

A. Meet the Demon

Consider an almighty, all-knowing demon who knows,
at any given time, exactly where a particle is in a closed
box. The demon also has an impeccable memory, and
can remember where a particle was in the box for as long
as it wants to. It can perplex us mortals as much as it
would like, but let us assume it was rather merciful today.
It gives us a box in thermal equilibrium, with just one
gas particle inside it. This particle moves about the box
freely and elastically. The demon then claims this box is
all we need to create energy–for free! Here is what the
demon does:

1. Measure I: The demon fixes a partition in the mid-
dle of the box, splitting the box into two equal re-
gions.

2. Measure II: The demon registers which region the
single particle is now in, and encodes that into its
memory.

3. Feedback I: The demon then lets the partition move
freely, so that it can be isothermally pushed by the
bouncing particle.

4. Feedback II: The demon takes out the partition.

5. Erase: The demon forgets its encoded memory of
the particle’s location, and returns to step 1.
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FIG. 1: The Szilard engine protocol. The demon uses two
possible memory states of A and B, each corresponding
to either location the particle could be relative to the
partition. The particle may be either to the left of the
partition or to its right.

Figure 1 depicts the demon’s cycle.

While the process itself may look simple, the demon
points to the physical outcome of the feedback step. By
the ideal gas law, we compute the work done by the sys-
tem as:

−
∫ V1

V0

PdV = −
∫ V1

V0

kBT

V
dV = kBT ln 2, (1)

where kB is the Boltzmann constant and T is the tem-
perature of the system.

This is actually startling, as the system has done work
without receiving any external physical work during the
cycle. It seems like the demon was being serious about
creating energy for free!
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B. Important Questions

The above protocol is a type of information engine,
a hypothetical device that uses abstract information in
extracting physical work. To be precise, our protocol
specifically is the Szilard engine, named after Leo Szilard.
As much fun they are to think about, their implications,
at first value, seem to suggest that our understanding
of thermodynamics is flawed. After all, the extraction
of energy out of null physical input is in clear violation
of the second violation of thermodynamics–you cannot
create order out of disorder for free.

We must not forget, however, that our laws of ther-
modynamics are much sturdier than we may sometimes
think. If we reexamine what had just happened, we no-
tice that there is a seemingly small but crucial detail that
has been overlooked: the demon’s memory. Unlike what
it may want us to believe, the demon itself is a part of
this process through its encoding and erasure of its mem-
ory about the particle’s location. It seems that this is the
point of focus in the demon’s deception, and we must find
its solution if we are to claim victory against it.

Of course, at first glance the idea of the demon’s in-
tangible memory bearing a direct effect on physical work
seems unsound. Before skipping to conclusions, however,
let us pose two important questions:

• How do we quantify abstract memory into physi-
cally applicable quantities?

• How does information manifest in physical dynam-
ics?

If we find appropriate answers to these questions, we
may not only find a way to defeat our demon, but even
see how we may view our physical reality through tools
from information theory. An actual interchange between
the abstract notion of information and our physical world
sounds, in a way, even more tempting than free energy
creation.

C. The Szilard Map

A simple yet effective answer to these questions is the
Szilard map. The Szilard map is a mapping of both the
particle’s location and the demon’s memory into a single-
two dimensional map. In the Szilard engine, we may
encode the state of the engine through two coordinates:
(Position L or R, Memory State A or B). L means the
particle is at the left of the partition, while R means it is
at its right. Either A or B can be assigned to each posi-
tion as the demon’s corresponding memory as to whether
the particle was L or R. This two-coordinate system is
easily mappable into a two-dimensional unit square, with
a sub-region in the square depicting one of four possible
system states.

The map, however, could also be represented by a two-
dimensional gas-filled box in thermal equilibrium. You

would initially have a partition through a point in the
vertical axis, splitting the box into two regions. You
would then uniformly fill one of those two regions with
the gas, and enact the following:

1. Measure I: Fix another partition down the middle
of the horizontal axis, splitting the gas into two
halves.

2. Measure II: Move the walls of one half so that that
half is placed above the position of the partition
through the vertical.

3. Feedback I: Let the split partition through the hor-
izontal move so that the gas may isothermally ex-
pand. Then take out the split partition.

4. Feedback II: Move the partition through the verti-
cal to a certain point.

5. Erase: Move the upper wall down to the very first
location of the partition through the vertical, and
replace the moved wall with the partition. Return
to step 1.

Figure 2 illustrates this process.
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FIG. 2: Representation of the Szilard mapping with a
two-dimensional gas-filled box. Filled red indicates re-
moval, dashed red indicates addition. Filled blue indi-
cates a wall to move, dashed blue indicates where to move
it to.

The horizontal axis represents the one-dimensional lo-
cation of the particle in the original engine, with the
partition through it representing the demon’s partition
separating left and right regions. The vertical axis, on
the other hand, represents the memory “location”. By
partitioning the vertical into two as well, we can assign
the memory states A and B into each part of the parti-
tioned vertical. This gives us the regions posing as the
four possible states from the two-coordinates of the Szi-
lard engine.

Why fill it with gas, then? The purpose of the gas
is to use its density in the regions. For the gas in each
partitioned region, its relative density there is equivalent
to the probability a particle will be in its corresponding
state for the Szilard engine. Note how depending on how
the two partitions are laid out and how far the partition
in step 4 goes down determines the distribution of the
gase throughout the protocol.

The Szilard map itself is mathematical, and an analysis
of this map as a chaotic system was made by Alec Boyd
and Professor Jim Crutchfield. A continuation of the

protocol would result in the mapping of Figure 3 [1].

FIG. 3: A continuation of the Szilard map protocol. Note
how η = δγ for the distribution to remain uniform.

Note here that for any initial “patch” in the map would
gradually be dispersed as the protocol continues over
many cycles. This means that for any small uncertainty
in the initial conditions of the system, its final outcome
could be in rather different regions at the end of many cy-
cles. This leads to the Szilard map being a deterministic
chaotic one.

With the interpretation of the Szilard map as a two-
dimensional box filled with gas, they could quantify the
demon’s abstract memory as a physical dimension of the
box. This allowed them to calculate the expansions of the
gas thermodynamically. Then, with the probabilities of
the possible location-memory states, they calculated the
expected values of heat released in each phase, reaching
the following result [1]:

〈Qmeasure〉+ 〈Qerase〉 = kBT ln 2 = −〈Qfeedback〉 , (2)

where Q is the heat released during a phase. By Equation
1, we can see that the average sum of heat is 0 through-
out the protocol. Since the process is isothermal, this
means the average work done is also 0, thus preserving
our known laws of thermodynamics.

This result bears significant implications in that we
can physically analyze information so that information
and physical work are, in effect, interchangeable. There
is even a ln 2 term in the work done during feedback
and the work required during measurement and erasure,
arising from the binary split of the system in the Szilard
engine. As the logarithmic base in physics is the natural
constant e while in information theory it is the binary
2, this change of base may hint at a handy equivalence
between the two.

D. Objectives

The prime objective of this paper was thus to continue
investigating the Szilard map. Throughout the UC Davis
2017 REU, I worked with Professor Crutchfield and Alec
Boyd and worked on extensions to their Szilard map.
This paper presents my extension of their Szilard map
to a multi-particle Szilard engine, and my analysis of the
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fractal dimension of single-particle Szilard map to further
reinforce the suggested interchangeability of abstract in-
formation with physical quantities.

II. MULTI-PARTICLE SZILARD MAP

While the Szilard engine may be awesome on its own,
as a physical engine it probably would have limitations
with just one particle. After all, as it is the case in sta-
tistical physics, it gets most interesting when the system
involves n-bodies. Thus, a method similar to the Szilard
map but applicable to several particles in a system was
desired.

This was where we turned to the physical realization
of the box described in Section I C. The density of the
gas allows us to know the probability a particle has in
a state, allowing us to account for all four possibilities
simultaneously. With multiple particles, however, there
are only so much we can do with this approach.

What we could do with the box, however, was to imple-
ment it in computations and directly simulate the multi-
particle Szilard engine with it. The correspondence to
the axes to the position and memory states still held, so
we could simply throw in the many gas particles into this
box, rendering it equivalent to just many single particle
Szilard engines stacked upon each other. Not only would
this keep the advantage of quantifying the demon mem-
ory as a workable physical quantity, it also allows us to
enact the Szilard map as many times as we’d desire at
the same time.

The particles in our simulations were classical, elas-
tic, and non-interacting, with the square box enclosed
by hard walls. Their velocities were distributed across
the Boltzmann distribution, while their positions were
distributed randomly in the box. We then implemented
Langevin dynamics for the box, dynamics approximat-
ing the thermal fluctuations for particles in a thermal
medium. We chose Langevin dynamics as it was more
practical to simulate Langevin motion than to simulate
each gas molecule in the box. Under Langevin dynam-
ics, each particle would obey the following equation of
motion per time step:

∆v = −βv∆t+R(t), (3)

where R(t) is a normal distribution with 〈R(t)〉 = 0 and

〈R(t)R(t′)〉 = 2βkBTδ(t − t′)
√

∆t. β is a damping con-

stant. The
√

∆t is from the normal distribution’s proper-
ties in a finite-sized step stochastic differential equation.

Before moving on to implement the moving walls and
partitions, we confirmed that our simulations were work-
ing as expected. Namely, we could check the time-
average total kinetic energy of the particles, which would
be predicted by thermodynamics as the gas is isothermal
and the particles obey Langevin dynamics. In two di-
mensions, the expected average energy would be NkBT ,
where N is the number of particles. Trials at various val-
ues confirmed that our simulations behaved as expected,

with the time-average temperature converging to the ex-
pected value. Figure 4 depicts one of our confirmations.

FIG. 4: An instance of testing our Langevin particles.
Red is the expected value of the time-average total kinetic
energy, cyan is the computed total kinetic energy at a
given time, and green is its time-average.

Next, we implemented the moving partitions. The
particles collided elastically with the partitions and the
surrounding unmoving walls. One point to note here
was that although the walls may be physical and thus
exchanging momentum with the particles, it needed to
look as if did not give momentum to the particles. This
was because otherwise the system would be thrown off-
equilibrium due to the additional kinetic energy given by
the walls’ motion. Thus, the box protocol needed to be
quasi-static, and the walls needed to move at a speed
significantly slower compared to the particles’ speeds.

The partitions of the box moved according to the pro-
tocol described in Section I C. The placement of the par-
titions, δ for the location axis and γ for the memory axis,
were adjustable parameters, as well as η, the destination
of the moving axis in step 4. These parameters, on av-
erage, determine the distribution of the particles in the
regions throughout the cycle.

Figure 5 is an instance of our simulations, and Figure
6 is a test of whether the quasi-static motion solves our
concern of excess momentum transfer. Figure 7 is a con-
trasting test with non-quasi-static partitions, where we
can see the effects of the additional momentum transfer
between the particles and the partitions.
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FIG. 5: An instance of our final multi-particle box.

FIG. 6: An test of the quasi-static partitions. Red is the
expected value of the time-average total kinetic energy,
cyan is the computed total kinetic energy at a given time,
and green is its time-average.

FIG. 7: An test with non-quasi-static partitions. Red
is the expected value of the time-average total kinetic
energy, cyan is the computed total kinetic energy at a
given time, and green is its time-average. Yellow is the
total work done on the particles at a given time.

This simulation provides us a method to compute the
exchange of information and work numerically. Rather
than attempt to calculate the average work as it has been
for a single particle [1], we can run this box several times
and directly compute the average total work in the box
throughout the many trials. Through our trials, we con-
firmed that the box continues to exert, on average, 0 ad-
ditional work onto the particles, as found for the single-
particle case in [1]. This gives even more evidence that
the Szilard engine, even with multiple particles, does not
violate the second law of thermodynamics as claimed by
the demon. Even with more than one particle, the demon
itself uses energy in changing its memory about where the
particles are.

III. FRACTAL DIMENSION

The first question of how to quantify information as
a physical quantity is now an answered one. Does the
Szilard map, then, also answer the second question of
how information manifests in physics?

Let us return to the single-particle Szilard map. The
map allows us to directly quantify the probability a par-
ticle would be in a position-memory state through the
density of the gas. The density of the gas, in turn, is
determined by the placement of the partitions, δ for the
location axis and γ for the memory axis, and η, the des-
tination of the moving axis in step 4 in Section I C. Since
these are all geometric quantities in terms of the shape
of the box as well, we may argue that the relative volume
of each region in the box is also its probability.
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From this view, we may take the volumes in the Szilard
map as the physical representations of the information of
a possible state. To be precise, we may apply the prob-
abilistic view of the Szilard map’s volumes and compute
the Shannon entropy of the system. The Shannon en-
tropy is a measure of the uncertainty of a system, which
is useful in probabilistic systems such as our Szilard map.
For a random variable X with probability pi for the i-th
possibility out of k total possibilities, its Shannon entropy
H(X) defined as:

H(X) = −
k∑
i

pi log2 pi. (4)

As the protocol runs through several cycles, the distri-
bution of the possible states changes, so the Shannon
entropy will change alongside the volume.

One point of curiosity here is just how correlated in-
formation, defined by the Shannon entropy, is to the
physical volumes of the system. In fact, let us return
to the continuation of the Szilard map through many
complete cycles, as depicted in Figure 3. One key ob-
servation of this continued mapping is that the mapping
is self-similar. A repetition of the protocol results in a
self-similar structure of the partitions. Thus, it becomes
possible to characterise the Szilard map as a fractal sys-
tem with a fractal dimension. Since the mapping is com-
plete in 2-D, the fractal dimension df of the Szilard map
is simply 2.

So then the question here would be then to compare
the geometric fractal nature of the Szilard map, shown by
the information dimension of 2, and the self-similarity in
the information of the system due to its volume change.
To go one step further, since we have already argued that
the information manifests in the volume itself, how could
we compare the propagation of Shannon entropy to the
rate of the discrete partitioning in the self-similar map?

To quantify this comparison, we define the information
dimension estimate:

d̂i =
H(X)

log2 b
, (5)

where H(X) is the Shannon entropy and b is the num-
ber of discretizations of the system. For our estimate,
we assume that the system can divided up into b discrete
sections, and each location-memory state region may oc-
cupy a certain number of the discrete sections. Since the
information of the system is in the demon memory, we
split the memory axis into b segments, and used it at the
completion of each cycle, just at the end of the erasure
step. Theoretically, the true information dimension of
the system would be when b→∞.

To compute the information dimension, we first need
to find what the probability distribution of the map is.
Since the probabilities are essentially the volumes occu-
pied by each region, we simply need to know how that
changes with each cycle. At the end of a cycle, the map

is “squeezed” back down below γ, while the division be-
tween the two regions is at η. After another cycle, the
entire map is again pushed back down below γ, but this
time with four regions, with their vertical lengths as η2,
η(δ − η), η(δ − η), and (δ − η)2 respectively. Continuing
on this protocol, we realize that the vertical lengths of
the distinct regions at the end of a protocol, are in fact,
in the form of a binomial expansion, which is evident
from the structure of the map with its binary regions
and self-replication.

With this knowledge, we may compute d̂i at a finite
but large value for b.

One point we may see here is that d̂i will change de-
pending on what η is. To be precise, its relation to the
partition parameters δ and γ are crucial, since that will
determine how the initial partitioning is preserved by the
end of the cycle. If η = δγ, in particular, the proportions
of the initial partitioning will be also in the final par-
titioning, allowing a uniform dispersion of the mapping
and the gas in its physical equivalent (see Section I C). η
is therefore the key variable in our estimate of the infor-
mation dimension.

We first computed the particular case of when η = δγ.

Regardless of what b was, d̂i = 2 in this case, which quite
fittingly, is also the fractal dimension of the map. This
shows that when η = δγ, there is no information lost in
the system compared to the volumetric self-similarity of
the map.

On the other hand, when computed with cases for

η 6= δγ, d̂i < 2, with a dependence on b. This indi-
cates that when the map does not preserve the initial
proportions of the regions, some degree of information is
lost throughout the cycles. This also seems in line with
the conclusion from [1] that the Szilard map is chaotic,
as any slight deviation in η from δγ would result in some
loss of information.

Interestingly, this is also directly connected to the av-
erage work done by the Szilard engine at the end of a
cycle. If η = δγ, there is no change in the proportions
of the system from its initial to its final state, so ex-
pected value of the total work done by the map remains
0. If η 6= δγ, however, the system requires more work
to compensate for this inefficiency. Thus we suspected a
correlation between the two, and produced the result in
Figure 8.



7

FIG. 8: A plot of d̂i (in red, read with the left axis), and
the expected work 〈W 〉, (in yellow, read with the right
axis). For this plot, δ = 0.6, γ = 0.75, b = 20000.

The extrema of both values are at η = δγ. In fact, af-
ter some inspection, we found that the exact relation be-
tween the Shannon entropy of the system and the average
work after a cycle was:

〈W 〉 = kBT ln 2 |H(η)−H(δγ)| , (6)

where H(η) is the Shannon entropy at a given η, and
H(η) is the Shannon entropy when η = δγ. This result
is highly reminiscent of the result in not only [1], but
also of Landauer’s principle, which states that the infor-
mation required to erase a bit of information is kBT ln 2.
This seems appropriate, as the effect of η occurs in the

erasure phase. This, we believe, is a point of future devel-
opment, as we extend the computation of the informa-
tion dimension to multiple particles. This result seem-
ingly reinforces a direct interchangeability between phys-
ical quantities and their respective information, bringing
more light to the question of how information manifests
in physical reality.

IV. CONCLUSION

Throughout my time at the UC Davis summer REU, I
looked into a multi-particle extension of the Szilard map,
as well as a fractal dimensional analysis of the system.
Both investigations suggest a strong connection between
abstract information and physical quantities, and hope-
fully it points to a much richer field of exploration. One
point of interest would be in whether there is a minimum
for the information dimension for the Szilard engine and
other alternative types of information engines. Consider-
ing the significance of the structure of the system, some
ideas from other fields such as combinatorial geometry
and network theory may be useful, especially when we
possibly turn to the quantum versions of our results or
information engines with interacting particles.
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James, Greg Wimsatt, and the rest of the Complex Struc-
tures group at UC Davis for their advice and feedback, as
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