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With the advent of increasingly fast computers and their ubiquity in society, computational meth-
ods have become very important in every aspect of science. Many of these methods involve looking
at a simplified model of reality, taking into account approximate forms of the major interactions in
order to get more insight into the dynamics and behavior of a system. The Holstein model is such a
numerical method, used used by condensed matter theorists to investigate the interactions between
phonons and electrons within a solid. These interactions are the basis of the formation of charge
density waves and the BCS theory of superconductivity. This paper will lay out my experiences
during a summer spent in the 2017 REU program at UC Davis, under the supervision of Dr. Richard
Scalettar. I will begin by laying out the basics of Monte Carlo methods and build up to the Holstein
model and my findings.

I. MONTE CARLO BASICS

Monte Carlo methods were first developed by Stanis-
law Ulam while working at Los Alamos National Labora-
tory. Soon after, John von Neumann realized the power
that these methods brought and developed computers to
carry out Monte Carlo calculations[1]. The core concept
of Monte Carlo is that if a large number of outcomes are
sampled and measured, by taking an average over these
samples, accurate expectation values should be able to be
measured. These outcomes are created through random
processes and this dependence on randomness is how the
method gets its name, after a famous casino in Monaco.
In practice, one must define a system and the rules that
govern the creation of new samples.

First, we look at the definition of an ensemble average
for some value, A, from statistical mechanics:

Ā =

∑
iAie

−βEi∑
i e
−βEi

(1)

where the value i represents the unique states of the sys-
tem. This can be evaluated analytically if we know the
entire partition function of our system, but most of the
time, the system is so large, with many degrees of free-
dom, that it is infeasible to evaluate it. Monte Carlo
methods get around this limitation by sampling a large
number of states, such that the samples become repre-
sentative of the large phase space. One thing to note is
that in Eq. (1), each Ai is weighted by the Boltzmann
weight for each individual state. This is due to the fact
that higher energy states will show up less, according to
the Boltzmann weight of that state. In order to take this
into account, the states generated by the Monte Carlo
process must be distributed according to the Boltzmann
distribution. Creutz and Freedman refer to this as “im-
portance sampling,”[2] where important states show up
more often in our simulation than the unimportant ones.
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Over the course of a simulation, each new state we
analyze is randomly created from previous ones. At
each discrete time step, many small changes to the state
are suggested and the energy change, ∆E, that each
small change will incur is calculated from some prede-
fined Hamiltonian. The suggested change is then either
accepted or rejected with acceptance probability

P (accept change) =

{
1 if ∆E ≤ 0

e−β∆E otherwise
. (2)

Here, β is the inverse temperature that is defined at
the beginning of the simulation, meaning each simula-
tion is isothermal, coupled to a heat bath. This accep-
tance/rejection probability makes sure that important
states are analyzed with the correct weighting.

A. Ising Model

One of the simplest Monte Carlo models is the Ising
Model. The Ising Model is a model of ferromagnetism in
solids and consists of a square lattice with a stationary
particle at each lattice site that can have up or down
spin. The Hamiltonian that describes our system is:

Ĥ =
∑
<i,j>

−Jσiσj (3)

where < i, j > denotes all nearest-neighbor pairs, J is the
coupling constant, and σ is a variable that is ±1 based
on whether the spin at a lattice site is either up or down.

At each timestep, we iterate through the lattice and
try to flip each spin individually. Our results will be in-
dependent of the order in which we iterate through the
lattice. When we attempt to flip a spin, we calculate the
change in energy that this flip will incur. There are peri-
odic boundary conditions, meaning a spin on an edge of
the lattice is counted as a nearest neighbor to the spin on
the edge of the opposite side. Using Eq. (2), the spin is
either flipped or stays the same. After iterating through
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the entire lattice, the measurement process takes place.
There are several important values that one would want
to look at in this system, four of which are magnetism,
specific heat, magnetic susceptibility and the Binder Ra-
tio. The magnetization is given by:

M =

∣∣∣∣∣∑
i

σi

∣∣∣∣∣ . (4)

For the following definitions, we set kB = 1 and β = 1/T .
The magnetic susceptibility is how much the system will
react to an outside field, and is given by

χ = Nβ(〈M2〉 − 〈M〉2). (5)

The specific heat is the temperature derivative of the
energy and is given statistically by:

C = Nβ2(〈E2〉 − 〈E〉2) (6)

B. Ising Results

Figures 1 and 2 show the results of our Monte Carlo
Ising code. We ran the simulation on a 4x4 lattice, which
is small enough to allow us to do an exact enumera-
tion scheme on the system. This enumeration scheme
went through each and every possible lattice configura-
tion and measured each of the values we are interested in
and averaged them with appropriate Boltzmann weights.
This enumeration thus gives us the exact values that our
Monte Carlo results should converge to.
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FIG. 1. The results for 〈M〉 and 〈E〉 for a 4x4 lattice of
spins using the Ising Model. Both quantities are normalized
to the lattice size. The Monte Carlo simulation was run for
1000 steps to allow for equilibration and then averaged over
100,000 sweeps in which every lattice site was updated at each
sweep. J = 1.

The black vertical line is the analytic solution for the
critical temperature of the 2D Square-lattice Ising Model,
2.269, found by Lars Onsager in 1944[3]. This marks the

temperature at which the model goes from a magnetized
to an unmagnetized state. It is important to note that
the magnetization does not approach zero as the temper-
ature increases, as would be expected. This is an artifact
of the fact that we are simulating a 4x4 lattice, which is
very small and was done in order to allow for the enu-
meration process to be feasible. The high-temperature
limit will approach zero as we increase our lattice size
and approach the thermodynamic limit.

Our simulations for the 4x4 Ising lattice took 100,000
sweeps to complete, which is more than the number of
individual states in the model itself. In this case, for
the 4x4 lattice, the exact enumeration scheme is more
efficient. For the 5x5 lattice, however, a 100,000 sweep
Monte Carlo simulation will be 335 times as efficient as
the exact enumeration scheme.
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FIG. 2. Monte Carlo results for χ(magnetic susceptibility) vs.
T for several lattice sizes. In thermodynamic limit, the plot
should be a spike at 2.269. Note how for larger lattices, the
correct value is approached and the spikes get narrower.

II. QUANTUM HARMONIC OSCILLATOR

Monte Carlo methods have been implemented with
amazing success to many classical systems, such as the
Ising model described above. A natural next step would
be to try and implement Monte Carlo algorithms to quan-
tum systems. For a reader who is interested, Dr. Scalet-
tar has amazing introductory notes on several Quan-
tum Monte Carlo systems[4]. The main difference be-
tween classical and quantum models arise in the Hamilto-
nian. In classical Hamiltonians the variables are all num-
bers, for example, ±1 for the spins in the Ising Model.
Things become more interesting when looking at quan-
tum Hamiltonians, where we encounter operators which
do not commute with each other. Taking a look at the
quantum harmonic oscillator Hamiltonian, we see the fa-
mous pair of non-commuting operators, P̂ and X̂.

Ĥ =
P̂ 2

2m
+
mω2

2
X̂ (7)

Of course, there already exist analytic solutions to the
quantum harmonic oscillator, meaning we will be able
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to check our code’s answers and determine its accuracy.
This code will also be implemented into our Holstein
Model code as the phonons will be modeled as QHOs.
The derivation of this method is influenced greatly by
Feynman Path Integral formulation of Quantum Mechan-
ics. In this formalism, Feynman looks at all of the possi-
ble paths a particle can take through “imaginary time”
weighted by their importance[5]. In typical Monte Carlo
fashion, we hope to evaluate these integrals through ran-
dom sampling. This derivation was first provided by
Creutz and Freedman in their 1979 seminal paper, A Sta-
tistical Approach to Quantum Mechanics[2]. The deriva-
tion I present is from Dr. Scalettar’s notes[4]. To start
out, we must determine a form of the partition function
for our Hamiltonian.

Z = Tr[e−βĤ ] (8)

Note that e−βĤ bears a striking resemblance to the

quantum time evolution operator, e−
it
~ Ĥ . Thus, moti-

vated by Feynman, we can treat β as our imaginary time
in this statistical treatment. Unfortunately, we cannot
break apart this exponential, as P̂ and X̂ do not com-
mute, and so we must proceed by making an approxima-
tion: we discretize β (our imaginary time) into L pieces,
each of length ∆τ , giving β = L∆τ . This is what is
known as a Trotter approximation, and gives us

Ztr = Tr[e−∆τP̂ 2/2me−∆τmω2X̂2

]L. (9)

In the limit of ∆τ → 0, we recover Feynman’s formalism
and the exact solution.

Since we are looking to simulate a physical QHO sys-
tem, we will be working with positional eigenstates. It
then makes sense that we evaluate our trace over the po-
sitional states, giving

Ztr =

∫
dx1〈x1|[e−∆τP̂ 2/2me−∆τmω2X̂2

]L|x1〉. (10)

Using the relation,∫
dx |x〉〈x| = 1 (11)

We can insert a complete set of positional states in
between each of the L exponential factors, giving

Ztr =

∫
dx1dx2...dxL〈x1|e−∆τP̂ 2/2me−∆τmω2X̂2

|x2〉

〈x2|e−∆τP̂ 2/2me−∆τmω2X̂2

|x3〉...

〈xL|e−∆τP̂ 2/2me−∆τmω2X̂2

|x1〉

=

∫
dx1dx2...dxLexp[−1

2
mω2∆τ

L∑
l=1

x2
l ]

〈x1|e−∆τP̂ 2/2m|x2〉...〈xL|e−∆τP̂ 2/2m|x1〉.
(12)

In the second equality sign, we simply evaluated the X̂
operator on the position eigenstates and got out the num-
ber values, xl. We have yet another problem, as we now
have P̂ operators acting on position states. To remedy
this, we use Eq. (11), this time inserting complete sets
of momentum states. Each one of the remaining matrix
elements can be evaluated as such:

〈xl|e−∆τP̂ 2/2m|xl+1〉 =

∫
dp〈xl|e−∆τP̂ 2/2m|p〉〈p|xl+1〉

=

∫
dp e−∆τp2/2meip(xl−xl+1)

=

√
2mπ

∆τ
e−

1
2m∆τ [(xl−xl+1)/∆τ ]2

(13)
We have now removed our momentum dependence

from our partition function. The velocity part of our
kinetic energy operator comes out to be the difference
in position between adjacent time slices, divided by ∆τ .
We drop the prefactor, as we can see that it will cancel
out when we measure expectation values.

Our final result is our partition function is now approx-
imated to arbitrary precision by the classical position,

Ztr =

∫
dx1dx2...dxL e

−∆τScl

Scl =
1

2
mω2

∑
l

x2
l +

1

2
m
∑
l

(
xl − xl+1

∆τ

)2 (14)

Scl is called the classical action, and is what we use in
our simulation to calculate the acceptance probability for
a certain suggested move. The ∆E in Eq. (2) is replaced
by ∆Scl. This result can be generalized easily to the
anharmonic oscillator, which has no analytic solution,
using the same derivation presented above.

Analyzing our action, we notice that what was once a
one dimensional problem, a quantum harmonic oscillator,
has now turned into a two dimensional problem in which
we have a line of classical harmonic oscillators that are
coupled together through some quadratic potential we
can think of as a spring potential. A diagram of what this
can be visualized as is shown in Fig. 3. This is a general
truth for all quantum systems: A quantum Hamiltonian
of dimension D will map to a classical action of D+1
dimensions, where the extra dimension is imaginary time.

A. QHO results

I spent a portion of time writing a QHO Monte Carlo
code and then comparing the results with the known an-
alytic solutions. I looked at particularly the expectation
values of the potential and kinetic energy vs. tempera-
ture, which, according to the Virial Theorem, should be
equal. Fig. 4 shows the results of my code alongside the
analytic solution. As is evident from the graph, smaller
values of ∆τ give better agreement with the actual val-
ues, but smaller ∆τ values also incur larger computa-
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FIG. 3. A snapshot visualization of what our system may
look like within the simulation
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FIG. 4. Analytic and simulation results for the expectation
of kinetic and potential energy for the quantum harmonic
oscillator.

tional expenses, as more imaginary time slices must be
considered.

III. HOLSTEIN MODEL

The Holstein model is a simplified model that aims to
describe the interactions between phonons and fermions
(electrons) within a solid. I will use the term electron

but the reader should be aware that the model does not
take into account charge interactions between particles.
The Holstein model treats each lattice point as a nu-
cleus that can wiggle in position, such as they do in real
solids. These phonons are modeled as QHOs. Electrons
are present in the simulation and can hop between lattice
sites, yet there are only allowed to be two at each site,
in accordance with the Pauli Exclusion Principle. The
complete Hamiltonian is given by:

Ĥ =− t
∑
i,j,σ

(c†iσcjσ + c†jσciσ)− µ
∑
i

ni

+ λ
∑
i

nix̂i +
∑
i

(
1

2
p̂2
i +

ω2

2
x̂2
i

) (15)

This Hamiltonian will take a bit of explaining in or-

der to fully understand. First, c†iσ and ciσ are operators
which destroy and create an electron with spin σ at lat-
tice site i, respectively. The first term in the Hamiltonian
acts as the kinetic energy operator, it moves an electron
from site i to j, which increases the energy by t, a value
that is almost always set to 1. The next term is a chem-
ical potential µ and the ni is the number of electrons at
site i. This term allows us to tune the amount of elec-
trons we have in our system. Because we are interested
in special phases called charge-density waves, we always
run our simulations such that there are, on average, one
electron per lattice site. The third term describes the
coupling between phonons and electrons; λ is a constant
which sets the strength of this coupling. Analyzing this
term closer shows that it is energetically advantageous for
phonons to stretch (in the negative direction) when there
is an electron (or two) on the lattice site. Finally, the last
term is the QHO Hamiltonian we described above, which
governs the phonons at each lattice site.

It was my job to investigate the dependence of the
critical temperature on parameters such as the electron-
phonon coupling constant and the phonon frequency. Dr.
Scalettar mentioned several times that there is a large
false assumption within the Holstein literature that states
that the dynamics and properties of a system depend
simply on the ratio λ2/ω. What we set out to show is
that this is not true by finding the critical temperatures
at different values for λ2/ω for several different values for
λ and showing they do not match up. Our results would
show how well this value actually does at characterizing
the system.

Just as any good researcher should do before using a
code supplied to them, I first checked its results to an-
alytic solutions I found. The Holstein Model itself has
no analytic solution, but in two limiting cases one can
solve it exactly. The first limiting case is when the ki-
netic energy term, t, is set to zero. This is known as the
Single-Site Holstein model as there is no movement of
electrons from site-to-site. In this limiting case, we can
find solutions for the expectation value of electron den-
sity. I also adapted my QHO code from earlier into my
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FIG. 5. Three results for the expectation value of electron
density in the Single-Site Holstein model. Solid lines are ana-
lytic solutions, solid data points are from the code I was given
and the hollow data points are from my own code. All show
very good agreement with each other. µ = 0.2
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FIG. 6. Analytic and simulation results for the non-
interacting phonons and electrons. Good agreement is shown,
giving confidence to the accuracy of the DQMC code.

own Single-Site Holstein code. The results for this first
test of the code are shown in Fig. 5.

The second limit in which I tested the code is where
λ = 0, that is, where there is no interaction between
phonons and electrons. I did not write my own code for
this limit, but I did compare the results of the code I was
given to the analytic solution. These results are shown
in Fig. 6 and show great agreement for both density and
energy.

A. Connection to BCS Theory

The BCS theory of superconductivity is a very
successful microscopic theory of the origins of
superconductivity.[6] It was first presented in 1957

by Bardeen, Cooper, and Schrieffer, who were all later
awarded the Nobel Prize for the work in 1972. The
basis of the theory is that at low temperatures, the
interactions between electrons and phonons on the
lattice become significant and lead to the formation of
Cooper pairs. These Cooper pairs act as bosons and
form a Bose-Einstein condensate within the material,
which leads to the superconductive properties we en-
counter. The mechanism for the formation of Cooper
pairs in BCS theory and in the Holstein model are the
same. An electron will attract a nucleus (lattice site)
towards itself within the material. This attraction is
accounted for in the third term of our Hamiltonian. This
attraction moves the nucleus farther from its equilibrium
position at the lattice site. Another electron will then
be attracted to this positive charge as it moves closer
and will hop onto the lattice site. Thus, we have two
electrons on such a lattice site, which is our Cooper
pair. This causes further stretching of the phonon and
it becomes more and more energetically unfavorable for
either of the electrons to leave the lattice site and they
become, in a sense, bound.

B. Charge Density Waves

Superconducting phases do occur in the Holstein
model, but they occur when there are less electrons on
the lattice which are free to move around without compli-
cations arising from the Pauli Exclusion Principle. What
we are interested in though, is a phase called a charge-
density wave. This occurs when the system is at half-
filling, meaning there is, on average, one electron per
lattice site. The charge density wave phase is character-
ized by an alternating pattern of sites with no electrons
and two electrons. A diagram of what this looks like in
a 2D system is shown in Fig. 7.

These phases are interesting because they occur in
real materials and often compete with superconducting
phases. Knowledge about how these phases form may
help us in the design of new materials in which the super-
conducting phase occurs at larger amounts of conditions.
A real material where this competition is of particular
interest is Ba1−xKxPbBiO3. The relative concentrations
of Ba and K change the phase diagram and the conditions
at which superconductivity or CDW phases occur.
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FIG. 7. Diagram of a charge density wave state in the Holstein
model. Circles are the lattice sites and the up and down
arrows represent electrons with spins up and down.

FIG. 8. Correlation function for a CDW state. At long ranges,
the sites an even number away from our origin are positively
correlated, while the odd sites are negatively correlated.

C. CDW Structure Factor

In order to determine whether or not the system is
in a CDW state, we measure what is called the CDW
structure factor. We first define a correlation function
for some operator Ô as

c(r) = 〈Ôr0Ôr0+r〉 (16)

Where r0 is some origin lattice site and 〈〉 denotes an
ensemble average. This correlation function behaves as:

c(r) =


e−

r
ξ if T > Tc

r−p if T = Tc
const. if T < Tc

. (17)

Fig. 8 shows an example of a lattice which is in a CDW
state, meaning that T < Tc and the correlation function
should become constant at long ranges. In order to calcu-
late the structure factor, we take the Fourier Transform
of the correlation function and analyze the q = π mode

SF (q) =
∑
r

c(r)eiqr. (18)
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D. Results

We ran our simulations for three different lattice sizes:
6x6, 8x8 and 10x10. Each lattice size was ran for 20
different temperatures. An example of a plot of our data
is given in Fig. 9.

The critical temperature is the temperature at which
the phase transition into the CDW occurs. In order to
determine this temperature, we do a data collapse on
the data presented in Fig. 9. This type of data collapse
is commonplace in condensed matter theory for finding
the critical temperatures of certain systems. This data
collapse is done such that the results from each of the
lattice sizes end up lying on top of each other. This
is done buy an algorithm that determines the βc that
minimizes the distance between data points. The collapse
for the data presented in Fig. 9 is given in Fig. 10. Note
the scaling factors that are used and shown on the axis
labels.
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FIG. 11. The final goal of my project: to show the dependence
of the critical temperature on the value λ2/ω

Once we got all the βc for all our values, we put them
all on a βc vs. λ2/ω plot. If one were to believe that λ2/ω
was a good determinant of the properties of the system,
one would expect that the curves for different values of λ

would lie on top of each other. What we found was that
this was actually quite a good assumption to make in the
regime of low ω values, as shown in Fig. 11. There were
large deviations though, in the high ω regime.

E. Conclusions

We originally set out to test the assumption that the
value λ2/ω determines the dynamics and properties of a
system in the Holstein model. This assumption is preva-
lent in the community and literature, so to either provide
evidence for or to dispel this assumption is rather impor-
tant. We tested this by finding the critical temperature
at 12 different values of λ2/ω with 3 different λ values
for each. We found that in the limit that λ2/ω > 2, the
βc for all three simulations were very close. However,
outside this region, there were large divergences for the
different λ values. This finding shows that the assump-
tion that λ2/ω is a good predictor of the properties of
a system may be valid for some values, but fails in the
high-ω limit.
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