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1. ABSTRACT

We present a model independent eigenmode analysis of the ionization history around
recombination and before reionization. This analysis uses only data which could be gath-
ered from a power spectrum analysis of the cosmic microwave background, and simulates
changes in the fiducial model of the ionization history. A perturbative method is used to
obtain numerical derivatives ∂Cl

∂Xi
, where Xi are perturbations of the ionization history at

various redshift values. The marginalized Fisher matrix obtained from this set of deriva-
tives is then diagonalized to obtain the model independent principal components for the
ionization history.

2. INTRODUCTION

The subject for this summer project was a quantitiy known to cosmologists called the
free electron fraction Xe. The free electron fraction is defined as

Xe ≡
ne

nH −ne

where ne denotes the number density of free electrons and nH denotes the number density
of Hydrogen atoms. This value states empirically how ionized the universe is: when Xe = 0,
the universe is completely un-ionized, and when Xe = 1, the universe is completely ionized.

FIGURE 1. The Free Electron Fraction Xe as a function of Redshift z.
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Shown on figure 1 is the Ionization history. Here, redshift z is defined as

1+ z≡ λobs

λemit
=

1
a

where a is the scale factor, and λ are the wavelengths of emitted and observed light. The
period around z ∼ 10 is typically called reionization, z ∼ 10 to 800 typically is called the
ionization floor, z ∼ 800 to 1200 is called recombination, and z ∼ 1200 on is typically
called the ionization ceiling. There are a number of reasons why this quantity is worth
studying.

The first is that the Planck Collaboration will soon release the results of an all sky
survey which places further constraints on the Cosmic Microwave Background (CMB)
power spectrum. This increased accuracy will be in the multipole moment range of `= 200
to 2000. Because the Planck data will constrain our cosmological parameters further, this
motivates an in depth study on the constraints for these values. The quantity which will be
studied in this analysis is the ionization history (quantified by the free electron fraction Xe)
and how well constrained the values of Xe are for various redshifts z around recombination.

In addition, competing models of dark matter predict how strong the electromagnetic
interactions between constituting particles are during the beginning of the universe. This
in turn alters the values of the free electron fraction Xe at a number of redshift values z. By
studying Xe, data which supports or rejects various models may be gathered.

Furthermore, the ionization history is a fundamental quantity of our universe purely
in the realm of atomic physics. By studying how strongly Xe is constrained by power
spectrum data, we can see how much of the ionization history is determined purely by the
CMB power spectrum.

3. METHODS

We begin with the defnition for the Power Spectrum. Let ΘX be the perturbation in a
given distribution. In this analysis, X = T,E, representing photon temperature and polar-
ization perturbations. This perturbation may be expanded in terms of the spherical har-
monics Ylm:

Θ
X (~x, p̂,η) =

∞

∑
l=1

l

∑
m=−l

aX
lm(~x,η)Ylm(p̂)

where~x denotes position, p̂ denotes direction, and η represents the conformal time. From
this, we may define the power spectrum CXY

l as

〈aX
lm,a

Y∗
l′m′〉= δll′ δmm′C

XY
l

where δi j denotes the Kronecker delta function. From this, we may define the Fisher matrix
in [5] as

Fi j = ∑
l

∑
X ,Y

∂CX
l

∂ si
Cov−1(ĈX

l ,Ĉ
Y
l )

∂CY
l

∂ s j

Here si are any cosmological parameters and X ,Y vary between T T , EE, and T E cor-
responding to temperature and polarization components of the power spectrum Cl . The
diagonal components of the covariance matrix are

Cov((ĈT T
l )2) =

2
(2l +1) fsky

(CT T
l +NT

l )
2

Cov((ĈEE
l )2) =

2
(2l +1) fsky

(CEE
l +NE

l )
2
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FIGURE 2. Delta Functions

Cov((ĈT E
l )2) =

1
(2l +1) fsky

((CT E
l )2 +(CT T

l +NT
l )(C

EE
l +NE

l ))

and the off diagonal components of the covariance matrix are

Cov(ĈT T
l ĈEE

l ) =
2

(2l +1) fsky
(CT E

l )2

Cov(ĈT T
l ĈT E

l ) =
2

(2l +1) fsky
CT E

l (CT T
l +NT

l )

Cov(ĈEE
l ĈT E

l ) =
2

(2l +1) fsky
CT E

l (CEE
l +NE

l )

where fsky is the fraction of sky covered in the survey, and Nl is the total noise at multipole
moment l from the T and E measurements respectively. The Nl values were obtained
from [1] and [3]. The Fisher matrix is a way to parameterize how well determined a set
of parameters are with respect to a given power spectrum. Because we wanted to learn
how well determined sections of the free electron fraction were, what we need is a set of
perturbation functions δ Xi of Xe. Once this set of perturbation functions is defined, we
may take derivatives ∂Cl

∂Xi
to determine how well constrained sections of Xe are. In [2], Xe

around reionization (z = 8− 25) was analyzed by a set of “delta functions,” displayed in
figure 2. Note that a “delta function” is a single triangle perturbed at some z value, not a
sequence of triangle waves.

This project began by applying the method used in [2] to a different section of Xe:
namely, z = 50 to 2000 which consists of the ionization floor, recombination, and a bit of
the ionization ceiling. However, the Fortran code CAMB had numerical problems with
the width, height, and lack of smoothness of the Delta functions, so a new method of
parameterizing Xe was needed to obtain well behaved derivatives. What was done was
perturb Xe by a sum of delta functions, to create a set of “table functions,” displayed in
figure 3.
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FIGURE 3. Table Funtions

FIGURE 4. Delta Functions Summing to a Table Function

These table functions may be thought of as a linear sum of a number of delta functions,
so the method is simply an extension of [2]. A visualization of one such some is shown
in figure 4. The advantages of perturbing Xe by table functions instead of delta functions
were numerous:

1. Because the table functions overlapped, when the table functions were summed to cre-
ate the eigenmodes, one delta function was in a sense averaged by the amplitudes of the



MODEL INDEPENDENT CONSTRAINTS ON THE IONIZATION HISTORY 5

 

FIGURE 5. Table Smoothing

surrounding table functions. However, these averages were physical as opposed to a nu-
merical smoothing algorithm applied to the resultant Fisher matrix.

2. The table functions behaved well numerically due to their width, but because they could
be created by delta functions of any width, the table functions could be placed close to one
another. This made it possible to perturb Xe more finely while still obtaining reasonable
numerical behavior, as opposed to wide delta functions which had to be placed far apart
from one another.

3. Linear combinations of table functions still obtained structures which behaved well nu-
merically. Delta functions did this as well, but other closely space perturbation functions
thought of by the author lacked this advantage.

The height of the table functions was determined by the center of the function, and set
by multiplying the value of Xe at the center of the table function by a constant value of
dY = 0.01. In addition, a smoothing algorithm was applied to individual table functions so
that the numerical behavior was more well behaved. The basic structure was left intact, so
all that was done was “smooth the edges” of the table functions, shown in figure 5.

To take the derivatives ∂Cl
∂Xi

, a linear approximation was made to obtain the values nu-
merically. First, the fiducial Xe was perturbed by a given table function δXi. This perturbed
free electron fraction Xe + δXi was then fed into CAMB to calculate the Cl’s of the per-
turbed model power spectrum. An output power spectrum Cl +∆Cl was then obtained. To
approximate ∂Cl

∂Xi
, the following expression was calculated:

∂Cl

∂Xi
≈ (Cl +∆Cl)−Cl

∆Xi
=

∆Cl

∆Xi

Where ∆Xi is the amplitude height of the delta function δXi. These numerical approx-
imations for the derivatives ∂Cl

∂Xi
were then marginalized over the standard cosmological

parameters. In other words, a new Fisher matrix F was calculated that included deriva-
tives of Cl with respect to the standard cosmological parameters. We let the components
si range between δXi,As,ns,Ωbh2,Ωch2,τ , and H0. Finally, to calculate the marginalized
Fisher matrix Fmarg, if 0 ≤ i ≤ k denotes the values of αi which are δXi, the following
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FIGURE 6. Sigma Values for Table Functions

matrix was calculated
G = F−1

Fmarg = (Gi j)
−1

where 0 ≤ i, j ≤ k. The purpose of marginalizing F is to “taint” the delta functions with
the influence from the standard cosmological parameters (This becomes useful when one
runs Monte Carlo Markov Chains). Once Fmarg was calculated, it was diagonalized to
obtain the matrix R:

Fmarg = Rσi
−2 R−1

This matrix R was used to find the Principal Components of Xe, a set of orthogonal func-
tions created by the perturbation functions δXi and eigenmodes m j, defined as

m j ≡ Ri j δXi

The way that m j is defined makes it so that the most well determined functions m j are
those with the smallest values, as

〈mi,m j〉= δi j σ
2
i

where δi j is the Kronecker delta function, not to be confused with the perturbation func-
tions δXi. Thus we have obtained a set of model independent functions mi which represent
linear combinations of perturbation functions δXi.

4. RESULTS

The sigma values obtained for the perturbation functions ∂Cl
∂Xi

are presented in figure 6.
Notice that the ionization floor (z = 50− 800) is more well determined than the ioniza-
tion ceiling (z = 1200− 2000). This is to be expected, as the visibility function peaks at
z ∼ 1100. This means that anything before z ∼ 1100 should have little effect on current
observations, or any changes to Xe should not yet be visible. It should be noted that in
order to calculate the Fisher matrix F given this set of derivatives, ` < 300 was ignored
due to the fact that the Cl’s became slightly chaotic.

Next we examine the sigma values for the eigenmodes mi in figure 7. We see that there
are something on the order of ∼ 25 eigenmodes which have signal to noise ratios less than
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FIGURE 7. Eigenmode Sigma Values

one. The reason why there would be so many eigenmodes with useful information may be
seen by looking at the plots for the eigenmodes themselves. The eigenmodes are indexed
such that the best determined modes have the lowest indexes, and the least determined
modes have the highest indexes. The eigenmodes themselves are presented in figure 8

Many eigenmodes perturb the ionization floor and recombination (z = 50−1200) por-
tions of Xe, causing significant effects with respect to Cl . Also notice all the eigenmodes
which have signal to noise ratios greater than one ( j = 25−35) perturb mainly the ioniza-
tion ceiling (z = 1200−2000).

For completeness, the table function amplitudes are included in figure 9. Notice the
fact that the amplitudes are more noisy than the eigenmodes. This smoothing comes from
the fact that the table functions overlap with one another, which allows the functions to be
much smoother than their delta function counterparts.

Due to lack of time, the author of this paper was not able to compare these eigenmodes
to competing theories for dark matter. However, it is noted that some theories predict a shift
in the values of the ionization floor, which is the best determined section for the ionization
history Xe, which may easily be seen by examining the first eigenmode. Reference [4]
examined the case where just the ionization floor was perturbed.

5. CONCLUSIONS

We may deduce a number of facts which will be useful for further analysis of Xe. First,
we see that the most constrained portion of Xe by far is the ionization floor. This is shown
by examining the first eigenmode, which is the best determined eigenmode by a factor of
10, and is completely restricted to the ionization floor. In addition, we also see that the
recombination history of Xe is also well constrained, as many of the most well constrained
eigenmodes perturb the region z = 800−1200, in particular the third eigenmode.

Second, it is clear that the ionization ceiling is poorly determined by cosmological data.
This may be seen by a combination of the fact that the covariance values are the highest for
perturbation functions which have centers in the range of z = 1200−2000, and all eigen-
modes which have signal to noise ratios greater than one perturb the ionization ceiling.
Thus the region of Xe where z > 1200 is poorly determined by observational data.
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FIGURE 8. Eigenmodes. Best three determined eigenmodes are listed
at the top.

One of the largest difficulties for this project was the fact that CAMB does not sample
frequently around recombination. If CAMB where fixed such that this period of the Ion-
ization History had more data points to perturb, eigenmodes which are less contaminated
by noise would be able to be obtained.
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FIGURE 9. Eigenmode Amplitudes for Table functions. X-axis is Red-
shift (z) and y-axis is Table Function amplitude.

6. ACKNOWLEDGEMENTS

I would like to begin by thank all those in the Cosmology Group which I worked with,
which consisted of Pr. Lloyd Knox, Marius Millea, and Bent Follin. These individuals
helped me understand the fundamentals of the subject which I was working on, debug
code, and were a sound board to new ideas. Next I would like to thank Pr. Rena Zieve,
director of the Physics Research Experiences for Undergraduates Program at the University
of California Davis, for organizing the REU program and REU related events. Last, I would
like to thank the National Science Foundation for funding this research.

REFERENCES

[1] R. Keisler et. al. A measurement of the damping tail of the cosmic microwave back-
ground power spectrum with the south pole telescope. The Astrophysical Journal,
743(1):28, 2011.

[2] Wayne Hu and Gilbert P. Holder. Model-independent reionization observables in the
cmb. Phys. Rev. D, 68:023001, Jul 2003.



10 JOHN ZANAZZI, NORTHERN ARIZONA UNIVERSITY

[3] N. Jarosik, C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason, M. Halpern, R. S.
Hill, G. Hinshaw, A. Kogut, E. Komatsu, D. Larson, M. Limon, S. S. Meyer, M. R.
Nolta, N. Odegard, L. Page, K. M. Smith, D. N. Spergel, G. S. Tucker, J. L. Weiland,
E. Wollack, and E. L. Wright. Seven-year Wilkinson Microwave Anisotropy Probe
(WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results. , 192:14,
February 2011.

[4] Nikhil Padmanabhan and Douglas P. Finkbeiner. Detecting dark matter annihila-
tion with cmb polarization: Signatures and experimental prospects. Phys. Rev. D,
72:023508, Jul 2005.

[5] Matias Zaldarriaga, David N. Spergel, and Uro Seljak. Microwave background con-
straints on cosmological parameters. The Astrophysical Journal, 488(1):1, 1997.


