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Abstract

In this paper, we modify the discrete Regge action of Causal Dynamical Triangulations
(CDT) to account for fixed boundary conditions on the spacetime manifold and to include an
appropriate boundary term. We demonstrate that the resulting geometries agree with previous
results from CDT with periodic boundary conditions—and more importantly, reduce to clas-
sical general relativity in the appropriate limit. We further propose a number of interesting
questions that fixed-boundaries CDT may be able to answer.

1 Introduction

1.1 The Problem of Quantum Gravity
An important question in modern physics is this:

How do we merge the theories of quantum mechanics and general relativity to produce
a physically meaningful theory of quantum gravity?

For a theory to be physically meaningful, it must agree with previous experimental results and
offer new, testable predictions. Currently, every theory of quantum gravity falls short of meeting
both these criteria [1].

A major challenge of merging the two theories is reconciling the fundamental assumptions that
each theory makes. Quantum mechanics assumes that fields (or particles, if you like) evolve in
time on a fixed background. Einstein’s theory of gravity, on the other hand, treats the background
itself as a dynamical object. Space and time bend, curve, and reshape themselves according to the
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mass and energy contained in the universe. Since the fields themselves are affected by changes
in background geometry, treating fields on a dynamical background has proven to be a major
challenge [1].

Several competing theories that attempt to build a coherent picture of quantum gravity have
emerged, including string theory and loop quantum gravity. However, as of yet, these theories fail
to meet all the criteria required for a physically meaningful theory. One could continue to work
on solving quantum gravity analytically, perhaps by continuing to study string theory or a similar
approach, or one could argue that these theories have more demanded of them than is fair [1, 2].

It is possible that the problem of quantum gravity is currently too hard and an analytic solution
must wait. Rather than attempt to solve all of quantum gravity at once, it might be more feasible
to attempt to gain insight from simpler models or numeric results [3, 1, 4].

Causal Dynamical Triangulations (CDT) is a method through which we hope to gain some
insight into the problem of quantum gravity. It is a method that finds the expected quantum universe
by translating the Feynman path integral into an integral over all possible space-times. CDT has
already reproduced the correct functional form for the vacuum solution of Einstein’s equations
[3, 5, 6, 7, 8] and appears to be a promising approach to quantizing gravity [9, 2, 10].

Although it is technically possible to approach CDT analytically, this appears intractable for
dimensions higher than 1+1. Instead, we approach the problem numerically. This results in a
statistical numerical model of quantum gravity [3].

This paper deals with CDT in 2+1 dimensions, as opposed to the 3+1 dimensions of Einstein’s
theory of gravity or the higher dimensions of string theory. We reduce the number of dimensions
for the same reason that we attempt a numerical rather than analytical model: It is easier to extract
physical insight from a simpler model. So far, the results are promising.

1.2 Overview
In this paper, I will briefly discuss the theory required for understanding Causal Dynamical Trian-
gulations in 2+1 dimensions, why it is useful, and what I accomplished over the summer. I will
discuss background information: the discretization of gravity, the discretization of spacetime, how
to change spacetime, and the algorithm for generating an ensemble of quantum spacetimes. Then
I will discuss my own research: the analytic derivation of the discretized Regge action with fixed
boundaries and the results of fixed-boundaries Monte Carlo simulations.

2 Quantizing Gravity by Path Integral
CDT’s approach to quantum gravity is to adapt Feynman’s path-integral formalism to gravity.
Classically, as shown in figure 1, a particle takes a single path between two points.1 However,
a quantum particle is a wave and thus de-localized. In some sense, it takes every possible path
between two points; the shortest path is simply the most likely path [11]. To account for this,

1It is important to note that these points are, in general, functions of time.
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Figure 1: A classical particle (left) takes a single path between two points (each a function of time),
while a quantum particle (right) takes every possible path.

we must sum over all possible paths from an initial point to a final point in order to calculate the
probability of a particle traveling between those points [11].

Formally, a path integral is usually written as

Z =
∫ x1

x0

[Dx]eiS[x]/h̄, (1)

where
S[x] =

∫ t1

t0
dtL[x(t)] (2)

is the action of the system, and L = KE−PE is the Lagrangian [11]. [Dx] does not mean the dif-
ferential form of the coordinates x, but the differential form of all possible paths between endpoints
x0 and x1. The idea is to sum over every path, weighting the value of each path by its amplitude.2

The term with the action in it, eiS/h̄, is meant to weight each path [11]. With some logical leaps,
we can extend this idea to gravity.

In gravity, the initial and final “points” x0 and x1 are the initial and final geometries of the
spatial dimensions of the universe [1]. Each “path” is a possible shape that space-time could form
to connect the initial and final geometries [1]. Each of these shapes is called a history, since it

2I mean amplitude in the quantum mechanics matter wave sense. Intuitively, though not rigorously, the amplitude
of path p is the likelihood a particle will take p.
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represents one possible history of the universe [1]. In natural units,3 the path integral thus becomes

Z =
∫
G
[Dgµν ]eiS[gµν ], (3)

where gµν is the metric tensor and G represents the space of all possible geometries of the
Lorentzian spacetime[3]. Instead of the action for a classical particle, we use the Einstein-Hilbert
action

SEH =
1

16πG

∫
M
(R−2Λ)

√
−gdDx, (4)

where G is Newton’s constant, M is the spacetime manifold in question, R is the Ricci scalar, g
is the determinant of the metric tensor, Λ is the cosmological constant, and D is the number of
dimensions of gravity the theory works with [3, 12, 13, 14]. D is usually 4, but we will work with
D = 3.

If the spacetime is to have boundaries (such as initial and final geometries), then we must add
the Gibbons-Hawking-York boundary term to the action:

SGHY =
1

8πG

∫
∂M

dD−1x
√

γK, (5)

where ∂M is the boundary submanifold of the spacetime, γ is the determinant of the induced
metric on the boundary, and K is the trace of the extrinsic curvature tensor [13].4 Thus, for non-
closed manifolds, the full action used in the path integral is [13]:

Scontinuous = SEH +SGHY

=
1

16πG

∫
M
(R−2Λ)

√
−gdDx+

1
8πG

∫
∂M

dD−1x
√

γK. (6)

It is worth noting that in previous work on CDT, the initial and final geometries were identified and
the system was given periodic boundary conditions. In the periodic case, the Gibbons-Hawking-
York term is zero and equation (4) completely describes the system. However, in the present work,
we do not use periodic boundary conditions, and the boundary term will become important.

3 Putting the Universe on Your Desktop
Up to this point, we’ve glossed over what it means to integrate over all possible spacetimes that
connect the initial and final geometries. In our case, we discretize the path integral and perform
the sum on a computer. Of course, we can’t possibly put every history in this infinite set with its
weight into the computer and sum over all of them. However, we can put a large enough number of
the likeliest histories into the computer and sum over those. Ideally, the contribution of the omitted
histories is small enough that the resulting sum converges in a physically meaningful way [3, 4, 1].

The major challenges of this procedure are discretizing space-time in a way a computer can
understand, and discretizing the action.

3In natural units, c = h̄ = 1. In this paper, unless otherwise stated, we will always use natural units.
4Mathematicians call the extrinsic curvature the Second Fundamental Form.
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3.1 Regge Calculus: Discretizing Space-Time
In theory, it is possible to approximate a manifold using a discrete number of points and a metric
function defined on those points. However, a more efficient method of discretizing space-time is
the coordinate-free method proposed by Regge [15, 12].

In coordinates, one calculates curvature at each point by performing parallel transport for a
vector V µ in an infinitesimally small closed loop around that point in a special way. We contain
the loop in the plane and define it by two vectors, Aµ and Bν . We then parallel transport the vector
along Aµ and Bν and complete the loop by transporting along −Bν and −Aµ . The change in the
vector due to parallel transport is thus

δV ρ = Rρ

σ µνV σ AµBν , (7)

where Rρ

σ µν is the Riemann curvature tensor [14].
In Regge’s formulation, we use a discrete, more rough-grained method. If we discretize a

manifold so that it is piecewise flat (continuous, but constructed of flat submanifolds), then we can
define a bone. A bone is a (D-2)-dimensional submanifold in which all curvature is concentrated.
Around each bone, we measure a deficit angle. For a simplicial manifold (a manifold made up of
D-dimensional simplices), a bone is a (D-2)-simplex and the deficit angle is failure of the angle
around the bone to equal 2π [15, 12].

Formally, the integrated curvature over a region can be approximated with

1
2

∫
region

√
gRdDx = ∑

b∈region
V (b)δb, (8)

where region is the region bounded by a closed curve, D is the dimension of the space, R is the
Ricci scalar, g= det(gµν) is the determinant of the metric, b indexes bones, V is the D-dimensional
analogue of volume for a bone’s length if D = 3, area if D = 2, etc., and δb is the deficit angle
around a given bone. By definition, V is unity if D = 2 [15, 12].

Although Regge proves this relation in his paper, an intuitive explanation might be in order. (A
more detailed explanation can be found in the chapter on Regge Calculus in [12] and Regge’s origi-
nal paper in [15].) In two dimensions, we can calculate the total curvature5 of a region bounded by
a closed curve by how much a vector parallel transported around the entire loop changes. Indeed,
if we construct our loop out of three geodesics to form a perfect triangle as shown in figure 2(A),
then the total curvature is uniquely determined by the failure of the interior angles of the triangle
to add up to π [16].

For a two-dimensional manifold, in a very rough, intuitive sense, the bone is the area bounded
by a closed curve, and the “volume” of this bone is an infinitesimal volume element over which
we are integrating. The equivalent to calculating the curvature at a point x on a sphere is shown in
figure 2(B) and (C). The curvature at point x is calculated by finding the deficit angle for a closed
curve bounding x. In the discrete case, this deficit angle is found by simply summing up the angles
of the triangles that contain x as a vertex around x and finding their deviation from 2π .

5The Ricci scalar integrated over a region
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Figure 2: (A) A perfect triangle, shown in red, can be used to measure the curvature in a bounded
region on a sphere. (B) A tetrahedron is a very crude approximation of a sphere. (C) Some-
what analogously to the use of a perfect triangle, we can find the curvature at a vertex x on the
tetrahedron—which is a bone for two-dimensional simplicial manifolds—by finding the deviation
from 2π of the full angle of rotation around the bone. We call this deviation the deficit angle.

It is important to note that the deficit angle of Regge’s formulation is only path independent
because the manifold is piecewise flat. In a piecewise flat manifold, all curvature is concentrated in
the bones. Thus, the precise points contained in the area bounded by the path are irrelevant as long
as the path goes around the bone. In general, curvature can be distributed throughout the manifold
and parallel transport is path-dependent [12, 16].

In CDT, we construct our discretized manifold entirely out of simplices,6 of a finite number of
types. In this case, the question of summing up angles becomes a question of counting simplices
that contain a bone7 [3]. It is important to note that Regge calculus does not demand that a manifold
be triangulated by equilateral simplices. Regge envisioned the lengths of individual bones and
simplices changing to reflect curvature change [15, 12]. CDT’s method of adding and removing
simplices is a computational simplification added later. We will describe the simplices we use in
2+1-dimensional CDT in a later section. However, we must first address some global concerns.

3.2 Putting the “Causal” in Causal Dynamical Triangulations
There are three properties of CDT that make it a causal theory. The first and most obvious is that
all manifolds are Lorentzian manifolds, with an indefinite metric and one time dimension. One
consequence is that angles around space-like bones can be complex. The length-squared of a time-
like vector is negative, so the angle between a space-like vector xµ and a time-like vector yµ is
[3]:

6A simplex is a generalized triangle. Points, lines, triangles and tetrahedra are the simplices that can be embedded
in 3 dimensions.

7A bone is a vertex for D = 2, and edge for D = 3, a 2-dimensional face for D = 4, and so on.
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θ = arccos
[

xµyµ√
xνxνyσ yσ

]
= arccos

[
−|xµyµ |

i
√
|xνxνyσ yσ |

]
∈ C. (9)

If we wish to preserve causal structures, it is important to preserve this property [1].

Figure 3: A time foliation of space-time. We enforce a preferred proper time by separating the
universe into space-like manifolds at each proper time.

The second and third properties of CDT that make it a causal theory enforce a sort of “global
causality.” They are niceness conditions that were absent in the previous theory, Dynamical Tri-
angulations, which caused the path integral to behave badly [3, 1, 4]. The first niceness condition
is to enforce a time foliation on all space-times and allow only space-times that permit a foliation
into the path integral. Intuitively, a time foliation is a partitioning of the universe into space-like
manifolds, each at a proper time t, as shown in figure 3 [1].

The second niceness condition is a restriction on topological changes. At each proper time t,
the spatial geometry must have the same topology as the spatial geometries at each other time. For
example, if the topology of the space at time t = 0 is a sphere SD−1, then the topology at t = 1
cannot be a torus. This prevents wormholes and baby universes from entering a space-time [1].
Figure 4 shows the types of space-time that the two niceness conditions prevent from entering the
path integral.

Formally, these two niceness conditions on a D-dimensional manifold M mean that for any
finite time interval I, we can write the topology of the manifold as

M = I×Σ (10)

where Σ is any (D−1)-dimensional manifold.
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Figure 4: Two types of universes not allowed by CDT: (a) wormholes and (b) baby universes.
Image from [1].

3.3 The Building Blocks of CDT in 2+1 Dimensions
We are now ready to discuss how a space-time is actually constructed in 2+1-dimensional CDT.
We will first discuss the types of simplices used to build a space-time, then discuss the so-called
ergodic moves, which change a space-time.

3.3.1 Types of 3-Simplices

In 2+1-dimensional CDT, space-time is constructed of equilateral tetrahedra. In general, the space-
like edges of the tetrahedra are of length-squared a and the time-like edges are of length-squared
−αa. However, a is just a scale factor and we can take a = 1 without loss of generality.8 In 2+1
dimensions, α is also arbitrary and we can, without loss of generality, let α = 1 as well.9 Thus, in
2+1-dimensional CDT, spacetime is made of equilateral tetrahedra.

Although these tetrahedra are identical up to rigid motion, the time-foliation condition intro-
duces three separate orientations which must be treated differently [3, 1].10 Figure 5 shows the
three orientations: the (3,1)-, (2,2)-, and (1,3)-simplices. Each tetrahedron is suspended between
two proper times, and the space-like faces of the (3,1)- (1,3)-simplices triangulate the spatial
geometry of the universe at each proper time. The simplices are named for how many vertices
are located at what proper time. The (3,1)-simplex has three vertices in the lower time slice and
one in the upper time slice; the (2,2)-simplex has two vertices in each time slice; and the (1,3)-

8We will let a = 1 for the remainder of this paper.
9α is not arbitrary 3+1 dimensions.

10There are three orientations instead of two because foliation introduces not only a preferred time axis, but also a
preferred time direction, or arrow of time.
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Figure 5: The three types of simplex used in 2+1-dimensional CDT. Each type is referred to by
how many vertices it has in a given time slice. The (3,1)-simplex has three vertices in the lower
time slice and on in the upper time slice. The (2,2)-simplex has two vertices in each time slice,
and the (1,3)-simplex is a (3,1)-simplex, but upside-down. All three simplices are identical up
rigid motion. Image from [2].

simplex is a (3,1)-simplex, but upside-down [3]. For a space-time to be acceptable, all simplectic
“building blocks” must meet at triangular faces and all faces must be intersection points. The
only exception is at the boundary. Space-like triangles at the boundary may be contained by only
one (3,1)- or (1,3)-simplex [3]. Let the norm-squared of a space-like edge of our tetrahedra be
a = 1 and let the norm-squared of a time-like edge be −αa =−α . Note that in general α 6= 1. In
the 2+1-dimensional case, the value of α is irrelevant, so we choose it to be 1. However, in the
3+1-dimensional case, the value of α can change the physics, and α must be chosen with care.

3.3.2 The Ergodic Moves

Our method of generating contributions to the path integral relies on generating a random, unlikely
space-time and modifying it until it becomes a more likely space-time [3]. Therefore, it is impor-
tant to have some way to change an arbitrary configuration of simplices into another configuration.
To this end, we use the ergodic moves [3]. The moves are called ergodic because by composing
them, one can go from any allowed space-time to any other allowed space-time.

Figure 6 shows the 5 ergodic moves for 2+1-dimensional CDT. The (2,6) move acts on a
(3,1)-simplex and a (1,3)-simplex; the (3,1)-simplex is split into three (3,1)-simplices and the
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Figure 6: The ergodic moves in 2+1-dimensional CDT. Top left: The (2,6) move and its inverse.
Top right: The (4,4) move, its own inverse. Bottom: The (2,3) move and its inverse. Image from
[3]

(1,3)-simplex is split into three (1,3)-simplices. The (6,2) move is the inverse of the (2,6) move.
The (4,4) move acts on two (3,1)-simplices and two (1,3)-simplices and is its own inverse; it
simply rotates the edge shared by all four simplices by ninety degrees. The (2,3) move acts on a
(2,2)-simplex and either a (3,1)-simplex or a (1,3)-simplex; it adds an additional (2,2)-simplex
to the complex. The (3,2) move is the inverse of the (2,3) move. For a more detailed description
of the moves, see [3].

3.4 Performing the Path Integral
To quantize our discretized theory of gravity, we must build an ensemble of probable space-times
and average over them. This amounts to performing the path integral discussed in section 2 [3].
The averaging process depends on what observable we wish to “measure.” A specific example of
this will be discussed later. The primary hurdle, however, is building an ensemble of space-times.
For this, we rely on the Monte Carlo method and the Metropolis-Hastings algorithm [3].

The Metropolis algorithm as applied to CDT is as follows [3]:

1. Generate an arbitrary space-time constructed of equilateral simplices.

2. Randomly apply one of the ergodic moves to the space-time.

3. Calculate whether the new space-time is more or less likely than the old space-time, as given
by its un-normalized weight in the path integral,11 eiS.

11Technically, the normalized weight 1
Z eiS is the important quantity. However, since we only care about the ratio of
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4. If the new space-time is more likely than the previous space-time, accept the change with
probability P = 1. If it is less likely, accept the change with probability P = P(new)/P(old).

5. Return to step 2.

To ensure that the probability amplitude is real and positive, we perform a Wick rotation on our
space-time. A Wick rotation is a rotation of coordinates through the complex plane to change a
Lorentzian manifold into a Euclidean one, with positive definite metric. We change the norm-
squared of the time direction from negative to positive and pick up a factor of i [3].

After enough iterations of the Metropolis-Hastings algorithm, the frequency of each geometry
will approach the frequencies given by the actual probability distribution. We perform this pro-
cedure and wait a sufficient amount of time a large number of times to produce a large ensemble
of possible, relatively probable space-time geoemtries. We can average over these geometries to
perform a path integral and calculate various observable quantities [3].

4 The Discrete Regge Action
To calculate probabilities, we need to calculate the discretized action, known as the Regge action.
Ambørn and Loll first derived the action for 1+1, 2+1, and 3+1 dimensions [3]. The action for 2+1
dimensions with periodic boundary conditions in time is presented here. Later, when I discuss my
own work, I will discuss the derivation for the action in 2+1 dimensions with the addition of the
boundary term.

S(R)EH [Tc] = k
[

2π

i
NSL

1 −
3
i
kθ

(3,1)
SL

(
N(3,1)

3 +N(1,3)
3

)
− 2

i
θ
(2,2)
SL N(2,2)

3

]
(11)

+ k
√

α

[
2πNT L

1 −3θ
(3,1)
T L (N(3,1)

3 +N(1,3)
3 )−4θ

(2,2)
T L N(2,2)

3

]
− λ

12

[
(N(3,1)

3 +N(1,3)
3 )

√
3α +1+N(2,2)

3

√
4α +2

]
Here, k = 1

8πG and λ = Λk are coupling constants. −α is the length-squared of a time-like vector.
The Ny

x represents the number of simplices of a specific type. The subscript indicates the dimension
of the simplices and the superscript indicates the type of simplex: SL for spacelike, T L for timelike,
or (m,n) for a (m,n)-simplex of dimension 3. For example, the number of spacelike triangles is
NSL

2 and the number of (3,1)-simplices is N(3,1)
3 . θ

y
x represents the dihedral angle of a simplex

of a given type. The subscripts mean the same thing for angles as for numbers of simplices. Of
course, the dihedral angles for a (3,1)-simplex are the same as the dihedral angles for a (1,3)-
simplex, since they are the same angles, just on different time-slices. The first line comes from
the summation over spacelike hinges, the second line comes from the summation over timelike
hinges, and the third line comes from the summation over 3-simplices. Note that we could rewrite
the second term of the first line using the relation 4NSL

1 = 3
(

N(1,3)
3 +N(3,1)

3

)
[3].

weights, the factor of 1/Z cancels out. This is fortunate, since we don’t know what Z is—if we did, we could simply
perform the path integral.
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Although it is not used here, we will introduce the following notation.

V (2,2)
3 =

1
12

√
2α +1 and (12)

V (3,1)
3 = V (1,3)

3 =
1

12

√
3α +1, (13)

where V (2,2)
3 is the 3-dimensional volume of a (2,2)-simplex and V (3,1)

3 is the 3-dimensional vol-
ume of a (3,1) or (1,3) simplex. At first it seems like (3,1) and (2,2) simplices should have the
same 3-volume, since they’re the same up to rigid motion. However, rigid motion matters in this
case because the metric is Lorentzian. Timelike links have negative length, and it matters whether
the simplex has greater spacelike extent or timelike extent.

By plugging this action into the partition function, the theory of 2+1-dimensional CDT for
fixed boundary conditions is complete. Next, we will discuss my research and my results.

5 My Research
This section discusses my contributions to CDT in 2+1 dimensions. I derived the discrete Regge
action for a space-time where the boundaries are not identified. Instead, the initial and final time
slices are held fixed with spatial geometries defined by the physicist. I also implemented changes
to our group’s CDT simulation code that held these boundaries fixed. A previous student, David
Kemansky, also worked on this problem, and I would not have finished my project without the
contributions from David’s work.

First, I will describe the derivation of the Regge action in some depth. This derivation differs
from that of Ambjørn and Loll [3] because we include the boundary term. Then I will describe
the results of my project. I will not describe the details of the programming work here, but I am
working on a programmer’s guide for future students to use to modify my code.

5.1 An Aside on Extrinsic Curvature
Before we can discuss the actual derivation of the action, we need to discuss the discretiza-
tion of extrinsic curvature. Extrinsic curvature is the trace of the Second Fundamental Form—
mathematicians might recognize it as mean curvature. Extrinsic curvature is so called because it
depends on the embedding of the manifold in a larger space, while intrinsic curvature (i.e., Rie-
mann curvature) depends only on the metric. Hartle and Sorkin propose that∫

∂M
dD−1√

γK = ∑
b∈∂M

V (b)ψ(b), (14)

where γ is the induced metric12, K is the extrinsic curvature, V (b) is the (D− 2)-dimensional
analogue of volume of a bone in the boundary, and ψ(b) is the deficit angle of the bone[17].
Deficit angle works somewhat differently on the boundary than it does in the bulk.

12The induced metric is the metric inherited by the ambient metric and the embedding of the manifold.
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Figure 7: Finding the deficit angle on the boundary. The angle between the two vectors v1 and v2
is proportional to π−ψ(b), where ψ(b) is the deficit angle around the bone b.

In the boundary, we parallel transport a vector v1 normal to the boundary across a bone from
one (D−1)-dimensional simplex in our triangulation of the boundary to an adjacent one, where it
becomes v2, as shown in figure 7 [17]. If K = 0 and the space is flat, v1 is parallel to v2 and the
deficit angle is zero. If K 6= 0, then the deficit angle ψ is the angle between v1 and v2 [17].

5.2 Overview of the Discrete Action
For a (2+ 1)-dimensional space-time manifold13 M with boundary ∂M , we must add to the
Einstein-Hilbert action [12],

SEH [g] =
1

16πG

∫
M

d3x
√
−g(R−2Λ) , (15)

the Gibbons-Hawking-York boundary term [13],

SGH [γ] =
1

8πG

∫
∂M

d2y
√
|γ|K. (16)

Here, γ is the induced metric on the boundary ∂M and K is the trace of the extrinsic curvature
of the boundary ∂M . Regge demonstrated that, for a triangulated space-time manifold T , the
Einstein-Hilbert action assumes the form [15]

S(R)EH [T ] =
1

8πG ∑
h∈T

Ahδh−
Λ

8πG ∑
s∈T

Vs. (17)

Here, h is a 1-dimensional hinge having area Ah and deficit angle δh, while Vs is the space-time vol-
ume of a 3-simplex s. Hartle and Sorkin demonstrated that, for a triangulated space-time manifold

13From now on, we will be working in 2+1 dimensions. D is no longer arbitrary.
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T with boundary ∂T , the Gibbons-Hawking-York boundary term assumes the form [17]

S(R)GH [∂T ] =
1

8πG ∑
h∈∂T

Ahψh. (18)

Here, h is a 1-dimensional hinge on the boundary ∂T having area Ah and ψh is the angle between
the two vectors normal to the two spacelike 2-simplices intersecting at the hinge h.

We wish to determine the form of the Regge-Einstein-Hilbert action supplemented by the
Regge-Gibbons-Hawking-York boundary term in (2+ 1)-dimensional causal dynamical triangu-
lations for two-sphere spatial topology and line interval temporal topology.

5.3 The Bulk Action
If the Regge-Einstein-Hilbert action for (2+1)-dimensional causal dynamical triangulations (CDT)
is to include a boundary term, it must be split into a bulk term and a boundary term. Hartle and
Sorkin provide the framework for the Gibbons-Hawking-York boundary term [17]. However, we
must first ensure that the Regge-Einstein-Hilbert action does not take any boundary terms as input.
We will re-derive the Regge-Einstein-Hilbert action, making sure we don’t count any part of the
boundary. This is the bulk action.

We start with the CDT version of the Regge action [15] given by Ambjørn et al. [3]:

SR
EH [Tbulk] = k ∑

space-like
links l

Vol(l)
1
i

2π− ∑
tetrahedra

at l
t

θD(t, l)



+k ∑
time-like

links l

Vol(l)

2π− ∑
tetrahedra

at l
t

θD(t, l)

 (19)

−λ ∑
(3,1) and (1,3)

tetrahedra

V (3,1)
3 −λ ∑

(2,2)
tetrahedra

V (2,2)
3 .

Here Vol(l) is the volume of a given link l. Because we are in (2+ 1)-dimensions, we can
assume that Vol(l) = 1 for space-like links and that Vol(l) =

√
α for time-like links. θD(t, l) is the

dihedral angle of a tetrahedron t around a link l. V (2,2)
3 and V (3,1)

3 are the volumes of (2,2)− and
(3,1)− tetrahedra respectively. These values are given in Ambjørn et al [3].

14



If we distribute summation signs and perform obvious summations, we find that:

SR
EH [Tbulk] =

2πk
i

[
NSL

1 (T )−NSL
1 (S(2)i )−NSL

1 (S′(2)f )
]
− k

i ∑
space-like

links l

∑
tetrahedra t

at link l

θD(t, l)

+2πk
√

αNT L
1 − k

√
α ∑

time-like
links l

∑
tetrahedra t

at link l

θD(t, l) (20)

−λ

[
V (3,1)

3 (N(3,1)
3 +N(1,3)

3 )+V (2,2)
3 N(2,2)

3

]
,

where NSL
1 (S(2)i ) is the number of space-like links that lie in the initial surface at proper time τ = 0.

S(2) simply indicates that the topology of the surface is spherical. Likewise, NSL
1 (S′(2)f is the number

of space-like links that lie in the final surface at proper time τ = τ f inal . We perform the subtraction

in the first term to avoid over-counting objects in the boundary. V (3,1)
3 and V (2,2)

3 are the 3-volumes
of (3,1) (and likewise (1,3)) tetrahedra and (2,2) tetrahedra respectively.

We now need to count the number of tetrahedra connected to each link and sum over all links.
To perform this operation, we first act out the inner sum over dihedral angles around an individual
link:

SR
EH [Tbulk] =

2πk
i

[
NSL

1 (T )−NSL
1 (S

(2)
i )−NSL

1 (S
′(2)
f )

]
−k

i ∑
space-like

links l
in bulk

[
N(2,2)

3 (l)θ (2,2)
SL +N(1,3)

3 (l)θ (3,1)
SL +N(3,1)

3 (l)θ (1,3)
SL

]
(21)

+2πk
√

αNT L
1 − k

√
α ∑

time-like
links l

[
N(2,2)

3 (l)θ (2,2)
T L +N(1,3)

3 (l)θ (3,1)
T L +N(3,1)

3 (l)θ (3,1)
T L

]
−λ

[
V (3,1)

3 (N(3,1)
3 +N(1,3)

3 )+V (2,2)
3 N(2,2)

3

]
,

where N(2,2)
3 (l), N(3,1)

3 (l), and N(1,3)
3 (l) are the number of (2,2)−, (3,1)−, and (1,3)−tetrahedra

respectively around a given link. To perform the remaining summation over the entire manifold,
we look at how many links that each tetrahedron connects to and sum over tetrahedra, rather than
summing over tetrahedra at each link and then summing over tetrahedra. We know that:

• Each (2,2)−simplex connects to two space-like links in the bulk, but only one on each
boundary. Thus:

∑
space-like

links l
in bulk

N(2,2)
3 (l) = 2N(2,2)

3 (Tbulk)

and
∑

space-like
links l

in boundary

N(2,2)
3 (l) = N(2,2)

3 (S
(2)

i )+N(2,2)
3 (S

′(2)
f ),
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where N(2,2)
3 (Tbulk) is the total number of (2,2)−simplices in the manifold that do not con-

nect to a link in the boundary. Likewise, N(2,2)
3 (S

(2)
i ) and N(2,2)

3 (S
′(2)
f ) are the total number

of simplices that have at least one link (in fact exactly one) in the initial boundary or the final
boundary respectively. We will continue to use this naming convention. Thus:

∑
space-like

links l
in bulk

N(2,2)
3 (l) = 2N(2,2)

3 (Tbulk) = N(2,2)
3 −N(2,2)

3 (S
(2)

i )−N(2,2)
3 (S

′(2)
f ), (22)

where N(2,2)
3 is the total number of (2,2)-simplices in the manifold.

• Each (2,2)−simplex connects to four time-like links. Thus:

∑
time-like

links l

N(2,2)
3 (l) = 4N(2,2)

3 . (23)

There are no time-like links in the boundary, so will ignore this distinction.

• Each (3,1)− and each (1,3)−simplex in bulk connects to three spacelike links. Thus

∑
space-like

links l
in bulk

(
N(3,1)

3 +N(1,3)
3

)
= 3

(
N(3,1)

3 (Tbulk)+N(1,3)
3 (Tbulk)

)
.

On the initial boundary, each (3,1)−simplex connects to three links, but no (1,3)−simplex
connects to any links at all. Similarly, on the final boundary, each (1,3)−simplex connects
to 3 links but no (3,1)−simplex connects to any. Thus:

∑
space-like

links l
on-boundary

(N(3,1)
3 (l)+N(1,3)

3 (l)) = 3
(

N(3,1)
3 (S

(2)
i )+N(1,3)

3 (S
′(2)
f

)
.

Thus:

∑
space-like

links l
in bulk

(
N(3,1)

3 +N(1,3)
3

)
= 3

(
N(3,1)

3 (Tbulk)+N(1,3)
3 (Tbulk)

)

= 3
(

N(3,1)
3 +N(1,3)

3

)
(24)

−3
(

N(3,1)
3 (S

(2)
i )+N(1,3)

3 (S
′(2)
f )

)
.

• Each (3,1)− or (1,3)−simplex connects to 3 time-like links. Thus:

∑
time-like

links l

(
N(3,1)

3 (l)+N(1,3)
3 (l)

)
= 3

(
N(3,1)

3 +N(1,3)
3

)
. (25)

There are no time-like links in the boundary.
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If we take the counting relations given above into account, then we find that

SR
EH [Tbulk] =

2πk
i

[
NSL

1 (T )−NSL
1 (S

(2)
i )−NSL

1 (S
′(2)
f )

]
−k

i
θ
(2,2)
SL

[(
2N(2,2)

3 −N(2,2)
3 (S

(2)
i )−N(2,2)

3 (S
′(2)
f )

)]
−3k

i
θ
(1,3)
SL

[
N(1,3)

3 +N(3,1)
3 )−N(3,1)

3 (S
(2)

i )−N(1,3)
3 (S

′(2)
f )

]
(26)

+2πk
√

αNT L
1 − k

√
α

[
4θ

(2,2)
T L N(2,2)

3 +3θ
(3,1)
T L

(
N(3,1)

3 +N(1,3)
3

)]
−λ

[
V (3,1)

3 (N(3,1)
3 +N(1,3)

3 )+V (2,2)
3 N(2,2)

3

]
.

This is the bulk form of the Regge action.

5.4 The Gibbons-Hawking-York Term

Figure 8: (2,2)-simplices are the source of extrinsic curvature on the boundary. In parallel trans-
porting the vector normal to one component to the boundary between two spacelike 2-simplices
intersecting at the bone b (or hinge h), the vector rotates through twice the dihedral angle of a
(3,1)-simplex and through the dihedral angle of a (2,2)-simplex a number of times equal to how-
ever many 2-simplices are connected to the bone b.
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We now supplement the Regge-Einstein-Hilbert action for (2+1)-dimensional causal dynam-
ical triangulations with the appropriate Regge-Gibbons-Hawking-York boundary term. Given the
desired space-time topology, the boundary ∂Tc consists of two disconnected components: an ini-
tial (or past) spatial two-sphere S 2

i and a final (or future) spatial two-sphere S 2
f . Based on the

demonstration of Hartle and Sorkin [17], we propose the prescription

S(R)GH [∂Tc] =
1

8πG ∑
h∈S 2

i

1
i

[
π−2θ

(3,1)
SL −θ

(2,2)
SL N(2,2)

3↑ (h)
]

+
1

8πG ∑
h∈S 2

f

1
i

[
π−2θ

(1,3)
SL −θ

(2,2)
SL N(2,2)

3↓ (h)
]
. (27)

Here, N(2,2)
3↑ (h) is the number of future-directed (2,2) 3-simplices attached to the hinge h and

N(2,2)
3↓ (h) is the number of past-directed (2,2) 3-simplices attached to the hinge h. We justify

this prescription as follows. In parallel transporting the vector normal to one component of the
boundary ∂Tc between two spacelike 2-simplices intersecting at the hinge h, the vector rotates
through the angle

1
i

[
2θ

(3,1)
SL +θ

(2,2)
SL N(2,2)

3 (h)
]
, (28)

as shown in figure 8. When this angle is π

i , the extrinsic curvature vanishes locally at the hinge
h; this fact dictates the deficit angle-like form of our above prescription. The absence of a relative
negative sign between the contributions of the two disconnected components of the boundary ∂Tc
to the Regge-Gibbons-Hawking-York boundary term stems from the fact that the future-directed
orientation of the vector normal to S 2

i and the past-directed orientation of the vector normal to
S 2

f are accounted for in the past-directed and future-directed orientations of the (2,2) 3-simplices
attached to the boundary. Performing the summations over the hinges on the boundary ∂Tc, we
may rewrite the Regge-Gibbons-Hawking-York boundary term as

S(R)GH [∂Tc] =
1

8πG

[
π

i
NSL

1 (S 2
i )−

2
i
θ
(3,1)
SL NSL

1 (S 2
i )−

1
i
θ
(2,2)
SL N(2,2)

3↑ (S 2
i )

]
+

1
8πG

[
π

i
NSL

1 (S 2
f )−

2
i
θ
(3,1)
SL NSL

1 (S 2
f )−

1
i
θ
(2,2)
SL N(2,2)

3↓ (S 2
f )

]
. (29)
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The complete Regge action is thus

S(R)[Tc] =
2πk

i

[
NSL

1 (T )−NSL
1 (S

(2)
i )−NSL

1 (S
′(2)
f )

]
−k

i
θ
(2,2)
SL

[(
2N(2,2)

3 −N(2,2)
3 (S

(2)
i )−N(2,2)

3 (S
′(2)
f )

)]
−3k

i
θ
(1,3)
SL

[
N(1,3)

3 +N(3,1)
3 )−N(3,1)

3 (S
(2)

i )−N(1,3)
3 (S

′(2)
f )

]
+2πk

√
αNT L

1 − k
√

α

[
4θ

(2,2)
T L N(2,2)

3 +3θ
(3,1)
T L

(
N(3,1)

3 +N(1,3)
3

)]
−λ

[
V (3,1)

3 (N(3,1)
3 +N(1,3)

3 )+V (2,2)
3 N(2,2)

3

]
. (30)

+
1

8πG

[
π

i
NSL

1 (S 2
i )−

2
i
θ
(3,1)
SL NSL

1 (S 2
i )−

1
i
θ
(2,2)
SL N(2,2)

3↑ (S 2
i )

]
+

1
8πG

[
π

i
NSL

1 (S 2
f )−

2
i
θ
(3,1)
SL NSL

1 (S 2
f )−

1
i
θ
(2,2)
SL N(2,2)

3↓ (S 2
f )

]
.

5.5 Consistency Checks
Next, we demonstrate that our prescription for the Regge-Gibbons-Hawking-York boundary term
in (2+ 1)-dimensional causal dynamical triangulations is consistent with the form of the Regge-
Einstein-Hilbert action determined by Ambjørn et al. We make such a demonstration by verifying
that our prescription for the Regge-Gibbons-Hawking-York boundary term reproduces the Regge-
Einstein-Hilbert action when we compose two space-time regions sharing a common boundary
S 2

c . Consider two triangulated space-time manifolds Tc and T ′
c both with two-sphere spatial

topology and line interval temporal topology. The boundary ∂Tc consists of an initial two-sphere
S 2

i and a final two-sphere S 2
f , and the boundary ∂T ′

c consists of an initial two-sphere S ′2
i and a

final two-sphere S ′2
f . To compose the two triangulated space-time manifolds Tc and T ′

c , we first
take the two-spheres S 2

f and S ′2
i to have the same intrinsic geometry, then orient the two-spheres

S 2
f and S ′2

i to have coincident normal vectors. We may thus identify these two two-spheres
as S 2

c . The Regge-Gibbons-Hawking-York boundary term contributions of S 2
c from the two

triangulated space-time manifolds Tc and T ′
c are

1
8πG

[
π

i
NSL

1 (S 2
f )−

2
i
θ
(3,1)
SL NSL

1 (S 2
f )−

1
i
θ
(2,2)
SL N(2,2)

3↓ (S 2
f )

]
+

1
8πG

[
π

i
NSL

1 (S ′2
i )−

2
i
θ
(3,1)
SL NSL

1 (S ′2
i )−

1
i
θ
(2,2)
SL N(2,2)

3↑ (S ′2
i )

]
. (31)

Together these two Regge-Gibbons-Hawking-York boundary terms combine to give the contribu-
tion to the Regge-Einstein-Hilbert action coming from the spacelike hinges on S 2

c .
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5.6 Preliminary Results For Fixed Boundaries
So far, we have described the basic methods for CDT in 2+1 dimensions and derived the action
required for fixed-boundaries. We will now present results for fixed boundaries CDT simulations
and compare them to periodic-boundary simulations of the past. As discussed in section 3.4, the
averaging process for the path integral depends on what observable we wish to examine. Ob-
servables must relate to ensembles rather than to individual space-times. Quantum mechanics is
inherently probabilistic and this is as close as an experimenter can get. In this work, we discuss
spatial extent as a function of proper time. In other words, we count the number of space-like
triangles at each time slice for each space-time in an ensemble and average over this value to find
an expected “shape” for the universe. The standard deviation of this value can be thought of as the
quantum fluctuations around the mean, or as the variance of the observable.

Simulations are performed for a fixed size of the universe—i.e., a fixed number of time slices
and a fixed number of tetrahedra. We vary the values of G and Λ, whether the boundaries are fixed
to some geometry, or whether they are periodic. The topology of the spatial universe at each proper
time is homeomorphic to a two-sphere S2.

It is important to adjust G and Λ so that the probability of a volume increasing move being ac-
cepted is equal to the probability of a volume-decreasing move being accepted. This is because the
stability of the number of 3-simplices in the space-time depends on the simulation not preferring
one type of change in volume over any others. If we do not reach a steady state, the number of
3-simplices in a space-time will approach either infinity or zero and the simulation will be useless.

5.6.1 The Periodic Boundary Conditions Case

In the past, all CDT simulations were performed with periodic boundary conditions in time. In
other words, the geometries at the initial and final times were identified. This method produced
two “phases” of geometry based on the values of G and Λ. So-called “Phase A” concentrates
all spatial extent into one or two time slices, surrounded by thin “stalks”in which each time slice
contains only 4 space-like triangles—the minimal possible number required to be homeomorphic
to the sphere.

“Phase C” is more interesting. The spatial extent of the universe in phase C has the same
functional form as the Wick-rotated shape of de Sitter space. Figure 9 shows an example of Phase
C in the periodic boundary conditions case. Because all time slices are identical in the periodic time
case, the bulk of the space-time (the cos2(t) shape) can be centered on any time slice. To compare
space-times in an ensemble, a coordinate transform must be performed on each space-time in an
ensemble such that the bulk forms in the center of the coordinate system and the space-times can be
averaged. Although the functional form of the bulk conforms to the classical solution to Einstein’s
equations for an empty universe, the long “stalks” present in Phase A are present. These stalks are
non-classical and impossible to remove in the periodic boundary conditions case.

5.6.2 The Fixed Boundary Conditions Case

So far, for the fixed boundaries case, we have found Phase A and Phase C for approximately the
same coupling-constant values as for the periodic boundary conditions case. We have yet to find
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Figure 9: An example of Phase C in the periodic boundary conditions case. The x-axis is proper
time and the y-axis is the number of space-like triangles at a given time. The data points are the
average over a large ensemble of space-times. The error bars are the standard deviation. The line
is a fit to the functional form for Wick-rotated de Sitter space.

the critical values at which a phase transition occurs. If we set each boundary to be only four
space-like triangles (i.e., a tetrahedron) and use the exact same number of 3-simplices, number
of time slices, and values for G and Λ, we reproduce the results for periodic boundary conditions
exactly, as shown in figure 10.

However, with fixed boundaries, we can eliminate the stalks. If we choose the geometry at
proper time t = 12 in figure 10 to be the boundary at time t = 0, choose the geometry at t = 41 to
be our boundary at the final time, and allow for only 29 time slices, we can generate a space-time
ensemble whose average fits the classical solution very closely indeed, as shown in figure 11. To
our knowledge, eliminating the stalks has not been done with periodic boundary conditions. This
might indicate that fixed boundary conditions offer a more accurate picture of quantum gravity.

6 Outlook
So far, we have derived the discretized Regge action for the CDT in 2+1 dimensions in the fixed
boundary condition case and demonstrated that fixed-boundaries CDT can reproduce—and, in
fact, improve upon—results from periodic-boundary CDT. The level of control offered by fixed-
boundaries CDT hints that there might be interesting physics waiting to be explored with fixed
boundary conditions. One possibility is to explore the de Sitter length of simulated space-times
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Figure 10: An example of Phase C with fixed boundary conditions. Each boundary has 4 space-like
triangles in it.

in Phase C and find the most probable de Sitter length by varying the number of time slices in
the simulation. Another possibility is to keep one boundary fixed and vary the other boundary
over a wide number of geometries. By looking at the action, we could calculate the probability
that a space-time starting from a minimal initial geometry evolves into some final geometry. This
transition probability is known as the Hartle-Hawking wave function, and fixed boundaries CDT
might allow us to explore it in great depth.
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Figure 11: An example of Phase C with fixed boundary conditions. The boundaries and simulation
parameters have been chosen so as to eliminate the non-classical stalks—a feat which is, to our
knowledge, impossible with periodic boundary conditions.
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