
Vortices in Superfluid Helium

Ali Ehlen, under Professor Rena Zieve

REU at UC Davis, Summer 2012

Abstract

This paper summarizes the work I did in Professor Rena Zieve’s lab at UC Davis during the summer of 2012. I
continued her “vibrating wire” project, which focuses on understanding fluid vortices using circulating superfluid
helium in cylindrical brass cells. For the first half of the summer, I built cells to test the stability of these vortices,
and for the second half of the summer, I wrote a program to numerically calculate their behavior. This paper
begins with the motivation for the project and the basics of the vibrating wire experiment, and then details my
contribution in two parts: cell construction and vortex calculations.

1 Introduction

Vortices are important in many fluid dynamics applica-
tions. Because their presence affects the motion of any
body in a fluid, the influence of vortices is a crucial con-
sideration in varied fields such as astrophysics, meteo-
rology, aerospace engineering, and more. In Professor
Rena Zieve’s lab at the University of California, Davis,
we study the behavior of vortices in simplified systems—
superfluids—in order to better understand how they op-
erate in the context of more complex systems.

A vortex is defined by circulation, or nonzero fluid ve-
locity around a vortex core, as shown in Fig. 1. This can
be expressed mathematically as

κ =

∮
v · dl, (1)

where the integral is taken over a loop enclosing the core,
and κ is the circulation and v ·dl is the velocity of the fluid
tangent to the closed loop. From this equation, it can be
seen that for any type of nonvortex flow, such as diverg-
ing flow or unidirectional flow, the velocity components
around the closed loop will cancel, so the circulation κ
will be zero.

Figure 1: The velocity field around a vortex core at
(0,0).

For a given vortex system, κ is constant. For this to
be true, the velocity of fluid closer to the core must be
higher than the velocity of the fluid further away. This
relationship is pictured in Fig. 1, and is consistent with
common intuition about vortices.

However, a description of vortex motion becomes com-
plicated quickly when friction within the fluid is taken
into account; this is why superfluids are useful. Super-
fluids flow with no viscosity, and so dissipate no energy
as they move. This lack of friction and energy dissipa-
tion simplifies their flow patterns. In addition, superfluid
circulation κ is limited to integer values for a given single-
vortex system. To transition between these integer (quan-
tum) circulation states, a vortex must gain or lose energy
in specific, allowed amounts. The combination of zero
frictional dissipation and quantized circulation results in
very stable vortices. These are some benefits of study-
ing superfluid systems; undisturbed stationary superfluid
vortices in the ground state can persist indefinitely, and
superfluid vortex behavior is much simper than normal
fluid vortex behavior. Once the behavior in a superfluid
medium is understood, it can be generalized to more com-
plicated fluids.

1.1 Experimental Setup

Our process for measuring vortex behavior can be broken
into three components: the cryostat, the cell, and the
measurement system.

The cryostat, shown in schematic form in Fig. 2, cools
the helium to create a superfluid. Helium is a gas at room
temperature, but liquefies below 2.4 K. As it is cooled fur-
ther, an increasingly greater portion of the fluid becomes
superfluid. For this reason, we use the cryosystem to cool
our helium down to below 1K to ensure that most helium
involved in the experiment is superfluid.

The most important piece of the fridge is the cell,
which sits in a constant magnetic field at the bottom of

1



the apparatus. A close-up of the cell is shown in Fig. 3.
Each cell is two inches long, with a hollow cylindrical
brass body and caps on either end made of Stycast, a
clear epoxy. A 16 µm diameter superconducting niobium-
titanium (NbTi) wire runs lengthwise through the center
of the cell, as shown in the Fig. 4a.

During a run, we fill the cell with cooled helium
through an inlet hole in one of the caps, and rotate the
cryostat, inducing circulation in the helium. The flow
pattern is initially a complicated matrix of vortices, but in
most cases, all will annihilate but a single vortex around
the central wire, as shown in Fig.4b. In this setup, the
vortex is in its quantum ground state, with the wire act-
ing as its core.

Figure 2: Schematic of the fridge that cools down
helium for experiments [1].

Figure 3: Schematic of a basic cell.

Because a superfluid vortex is so stable, it is necessary
to perturb the system to observe interesting dynamics.
We do this either by jerking the cryostat (adding kinetic
energy), or by heating up part of the cell (adding ther-
mal energy). In the ideal case, the extra energy causes
one end of the vortex to move off of the central wire and
attach to the wall of the cell. This configuration is pic-
tured in Fig. 4c, and allows us to take measurements of
the interior of the cell.

(a) Internal view
of cell body with

wire, and no
vortex.

(b) Internal view
of cell body with a

straight vortex
covering the wire.

(c) Internal view
of cell body with a

partially free
vortex on the wire.

Figure 4: Different configurations of the vortex
discussed in this paper.

1.2 Measurement of Vortex Decay

Due to the section of the vortex remaining on the wire,
helium continues to circulate around the cell. The length
of the vortex that extends from the wire to the cell wall—
the free part of the vortex—exists in this circulating he-
lium and is swept around the cell accordingly. This phe-
nomenon is called vortex precession, and allows the vor-
tex to dissipate energy. As the free section of the vortex

2



precesses around the cell, it winds down the wire. Even-
tually, the length of the trapped vortex will shorten until
it vanishes entirely, and the helium in the cell will stop cir-
culating. To gain insight into vortex dynamics, we study
the behavior of this free vortex, and how quickly it decays.

An example of data is shown in Fig. 5. This is a plot
of circulation in the cell; as the vortex winds down, the
length of the trapped section of the vortex shrinks, which
decreases the circulation in the cell. Each data point in
Fig. 5 represents a circulation value, and there are several
steps involved in obtaining each point.

To find the value of circulation in the cell, we run
a pulse of current through the NbTi wire, and measure
the voltage across it. The initial pulse of current moves
charges up the wire through the magnetic field, induc-
ing a Lorenz force perpendicular to both the direction of
the magnetic field and the length of the wire. This force
“twangs” the wire, and starts it vibrating side-to-side.
This oscillating sideways motion of the wire through the
magnetic field causes another Lorenz force on the charge
carriers, this time up through the wire. The resultant
movement of charge carriers is manifested as a readable
voltage across the NbTi wire.

Figure 5: Circulation in the cell over time. As the
vortex shrinks, there is less circulation in the

cell [1].

However, the wire’s plane of vibration is affected by
the helium circulating around it. Helium pushing on the
wire causes its plane of vibration to rotate, resulting in
a periodic change in the measured voltage. The wire vi-
brates initially in a plane perpendicular to the external
magnetic field, resulting in the maximum Lorenz force on
the wire’s charge carriers, and the maximum possible in-
duced voltage. Once the plane of vibration rotates to be-
come parallel with the magnetic field, the charge carriers
feel no force because they are moving in the same direc-
tion as the magnetic field. When this occurs, the output
voltage drops to zero. Then, as the plane of vibration
continues to rotate, measured voltage continues to rise
until it reaches another peak when the plane of vibration
is again perpendicular to the magnetic field. In addition

to this, as the wire moves, the vibration is damped both
by materials in the wire and by the helium surrounding
it, resulting in the decay of the output voltage signal.

To obtain relevant data from this signal, it is broken
down by a computer program into its constituent sinu-
soidal and exponentially decaying components. The pe-
riod of sinusoidal voltage oscillation due to rotation of
the wire’s plane of vibration is related to the circulation
in the cell. Therefore, the program finds the period of the
sinusoid and converts this to a circulation value, which is
proportional to the amount of vortex left on the wire.
This process of calculating circulation based on the beat
frequency of the vibrating wire produces each point on
the plot in Fig. 5.

Other than the eventual decay of the vortex system,
an important feature of Fig. 5 is the oscillation in circula-
tion as the vortex winds down. This phenomenon results
from the fact that the NbTi wire is never exactly in the
center of the cell. Because of this, as the free section of
the vortex precesses around the cell, it moves between
areas where the wire is closer to the wall of the cell and
areas where the wire is farther away. When the free vor-
tex moves to an area where the wire is farther from the
cell wall, the free vortex must span a longer distance. To
compensate, some of the vortex that was trapped around
the wire peels off to become free vortex. Decreasing the
length of vortex around the central wire also decreases
circulation in the cell, causing one of the local minima
in Fig. 5. Similarly, when the free portion of the vortex
precesses to an area where the wire is closer to the cell
wall, some of the free vortex moves back onto the wire,
increasing the length of trapped wire, and therefore in-
creasing the circulation in the cell. This corresponds to a
local maximum in Fig. 5.

1.3 Double-Diameter Cells

In order to study the dynamics of the vortex during
this precession, it is often useful to know which end of
the vortex separated from the wire to attach to the cell
wall. We do this by using modified cells with a double-
diameter shape, where the diameter of the cell changes
about halfway down the cell, as shown in Fig. 6.

Figure 6: Schematic of a double-diameter cell. The
black in the NbTi wire and the blue is the vortex.

3



This change in diameter is useful because the aver-
age velocity of helium within a small radius of the core
is larger than the average velocity of helium included in
a larger area. Because the free section of the vortex pre-
cesses at a rate near the average velocity of the fluid carry-
ing it, a vortex in a thin cell precesses faster than a vortex
in a wider cell. Thus, as the vortex precesses through the
change in diameter in the double-diameter cells, the pe-
riod of precession will change. This is apparent in the
data shown in Fig. 7, where the vortex starts precessing
on the wide end of the cell (longer precession period) and
transitions to the thinner end (shorter precession period).
Additionally, the precession period is predictable given a
cell diameter, so it is possible to determine the position of
the vortex by looking at just a small chunk of precession
data.

Figure 7: Circulation as a function of time as a
vortex precesses around the cell. The vortex starts
precessing in the wider end of the cell (as indicated
by the longer precession period in the first half of
the graph), then transitions to precessing in the

thinner end. [1].

This summer, I worked with these double-diameter
cells. My work was split roughly into two phases. For
the first half of the program, I built new double-diameter
cells for testing in the cryostat. When it became clear
that helium was unavailable and so testing was not possi-
ble, I started a second piece of the project, working on a
simulation to better understand the behavior of vortices
in these oddly-shaped cells.

2 Building Cells

A recent Ph.D. student, Ingrid Neumann, ran tests
to explore the effects of the cell cap shape on stabil-
ity of the vortex. She did this by testing cells with
differently-shaped Stycast caps, then—taking advantage
of the double-diameter nature of the cell—recorded which
end of the cell the vortex came off after the brief addition
of energy. She had hoped to find a correlation between
the shape of the caps and how much energy was necessary
to knock the vortex off of the wire. However, she found
that, regardless of cell cap shape, the vortex came off of
the wire at the end of the cell with the helium inlet hole.
It appears that the helium entering the cell was creat-

ing enough turbulence that almost every vortex was less
stable near the inlet.

However, the inlet holes in her cells were small, mean-
ing that helium entered the cell at high velocities. This
summer, my initial project was to replicate some of In-
grid’s tests, but building cells with much larger inlet holes;
for a schematic, see Fig. 8. The idea was to be able to fi-
nally test the dependence of vortex stability on cap shape,
rather than placement of the helium inlet hole. To this
end, my goal this summer was to build four cells; two
with a flat cap and two with a “bump” cap; see Fig. 9.

(a) The type of inlet
holes in Ingrid’s cells.

(b) The larger inlet holes
in the caps of my cells.

Figure 8: Bird’s eye view of the different types of
helium inlet holes in the Stycast end caps. The
black dots are the NbTi wires coming out of the
page, and the white sections are the helium inlet

holes.

(a) Flat. (b) Bump.

Figure 9: Two different end cap geometries. Note
that the inlet hole is in the end cap with

unchanging geometery.

The procedure I followed to build the cells is pictured
schematically in five steps Fig. 10. First, a length of 187-
strand NbTi wire must be stripped of its insulation, cop-
per matrix, and most of its constituent strands. This
leaves a section of a single NbTi strand just longer than
the length of the brass body of a cell, as in Fig. 10a.

Then, one end of the wire is glued to a shaped cap (flat
or bumped), making sure that the Stycast seals around
both the thin and thick parts of the wire. Using the
weight of the wire to keep the setup in place facilitates
this process, and is shown in Fig. 10b.

The wire-and-cap combination is then attached to the
brass body of the cell. At the same time, the other cap
end (the cap with the helium inlet hole) is also epoxied
onto the body. While this dries, the unfixed end of the
wire rests partially fed through the inlet hole cap, but not
taut; this is shown in Fig. 10c.

4



The most delicate step is pulling the wire taut; this is
achieved by taping the cell upright to a shelf, and hanging
a weight to the free end of the wire, as in Fig.10d. This
end of the wire is then glued in to the cap, with caution
exercised to ensure that the inlet hole does not become

blocked.
If this step is completed without the wire breaking,

then a brass connector and some extra wiring are at-
tached; these can be seen in the photograph of three com-
pleted cells in Fig. 11.

(a) First, one two-inch section of the
insulated copper-coated NbTi is
stripped to a single NbTi strand.

(b) One end of the single strand is
glued (with Stycast) to the shaped cap
(flat or bumped). The wire and cap are
secured to the lab bench with tape, to

keep them in place while they dry.

(c) The cap-wire combination is glued
to one end of the brass cell, while the
cap with the inlet hole is glued to the
other. Note: the wire is shown here to
demonstrate that it is not taut at this
stage of the building process, but in
reality, it is inside the brass cylinder.

(d) When the caps are fixed onto the
body, the body is taped to a shelf and a
weight hung to the end of the wire to
keep it taut while it is glued to the

inlet-hole end cap.

(e) A finished cell. Again, the wire is
shown to demonstrate the fact that it is

taut within the cell.

Figure 10: The steps involved in constructing a cell.

5



Figure 11: A photograph of three completed cells,
including brass attachments that allow them to be
screwed on to the cryostat. One of these is from a

few years ago; I built the other two.

The Stycast epoxy takes around 12 hours to dry, and
each step, particularly the fourth, runs a high risk of
breaking the wire. Because of this, despite many at-
tempts, I was able to successfully build one cell and nearly
finish another. I checked the completed cell for leaks both
and room temperature and at 77K (liquid nitrogen tem-
perature). The other may be functional, but because of
attempted repair of a crack in one of the Stycast caps,
the helium inlet hole may be plugged.

However, we were not able to obtain the helium we
needed to run tests with these cells. So, for the second
half of the summer, I worked on a more theoretical piece
of this project, to help build up the group’s vortex simu-
lation code.

3 Calculations

The lab group has a set of solvers and time-steppers used
to solve for the velocity fields around vortex cores in dif-
ferent configurations. This allows us to understand bet-
ter what is happening inside of a cell; well-written simu-
lations will produce data that matches experiment, and
allow for deeper probing into the dynamics of the vortex.
For example, we cannot to look inside our cryostat to see
the position of the vortex, but we can follow the motion
of a simulated vortex directly.

It is possible to analytically solve for the velocity field
around a vortex running through or near the center of a
straight cylindrical cell. The lab group had also written
code to solve for the velocity field around a partially-free
vortex, but only in a straight cylindrical cell. In addition,
a simulator can step this solver through time, to follow
the motion of the vortex around the cell. This code has
successfully reproduced experimental results. However,
we did not have any code that could solve for the velocity

field around a partially-free vortex in a double-diameter
cell; this was my project for the rest of the summer.

Finding the velocity field in the cell involves several
steps. First, given a particular vortex position, the veloc-
ity field around that vortex (ignoring the influence of cell
walls) must be found. From now on, this will be called
the “initial velocity field.” This initial field must then be
modified to satisfy the boundary conditions imposed by
the walls of the cell.

To achieve this, another field (from now on called the
“secondary field”) that solves the Laplacian 0 = ∇2v
within the cell must be found. Because the velocity field
around a vortex core has zero curl everywhere but the
core, any solution to the full problem will also solve the
Laplacian. Adding another solution to the Laplacian
will not change the fact that the overall system solves
0 = ∇2v. Therefore, under these conditions, it is valid
to add another field to take into account the effect of the
cell walls.

The ideas in the previous two paragraphs can be com-
bined in the following manner to find a full solution. For
the vortex to produce a physically possible system, no
fluid can flow in or out of the walls of the cell. This
means that the components of fluid velocity perpendic-
ular to the cell walls must be zero. This is achieved by
calculating the perpendicular components of the initial
velocity field at the cell wall, then using their opposites
as boundary conditions to find the secondary field. Thus,
when the initial and secondary fields are added together,
their sum will solve the Laplacian (satisfying conditions
for a vortex field) and have no velocity components per-
pendicular to the cell walls at the cell walls (satisfying
conditions required of a physical system).

To complete these steps, I used code from several
sources. I wrote a batch of programs in Python to con-
struct a cell of user-determined dimensions (single- or
double-diametered) and output this cell in various for-
mats. An example of a virtually constructed cell is shown
in Fig. 14. The lab group had written a program called
boundaryValueDouble1 in C++ to find the compo-
nents of a vortex velocity field perpendicular to the cell
wall. I modified this to be compatible with the double-
diameter cells. I also found depSolver, an open source
Laplace solver written in C which takes in files of bound-
ary conditions and solves the Laplacian under those con-
straints. By the end of the summer, the combination of
these produced velocity fields that looked reasonable, and
could be modified for various cell dimensions and vortex
configurations.

3.1 depSolver

depSolver is a robust, open-source program I found on-
line2. Its stated purpose is to solve Laplace’s equation for

1I will notate names of programs in boldface, and names of data-containing text files in italics.
2For source code and associated documents, see code.google.com/p/depsolver/wiki/FullInstall
3https://code.google.com/p/depsolver/

6



3-dimensional electrostatic problems, using the bound-
ary element method (BEM)3. It takes input files that set
the electric potential at boundary points in any three-
dimensional shape. It can also take information about
the material within that boundary, specifically the dielec-
tric constants and interfaces between different dielectrics.
Lastly, it takes a file of internal points of interest. It then
calculates the potential, electric field, and electric Lorenz
force at each of these points.

We are not attempting to solve an electrostatics prob-
lem. However, the calculations that depSolver performs
are useful to us. If we set a constant dielectric (that of
a vacuum), we can take advantage of the program’s cal-
culation of electric potential. If there is no free charge in
a region, the electric potential in that region solves the
Laplacian. Therefore, if we give depSolver boundary
conditions that it can read in as values of electric poten-
tial, we can use its solution for potential at the internal
points as the velocity field we are looking for. However,
because potential is a scalar, we can’t enter velocity in
vector form. Therefore, because each component of ve-
locity also solves the Laplacian separately, we can enter
each component to depSolver separately. The compo-
nents can be combined into vectors later.

The core of depSolver’s calculations lies in Gaussian
quadrature of given boundary elements, where boundary
elements are geometric breakdowns of the boundary sur-
face. In this application, these elements are always tri-
angles4. This process finds the best points at which to
evaluate for a solution within each element5. Because
Gaussian quadrature does not produce accurate results
if one part of an element is singular, depSolver checks
for singularity at the nodes of each triangle. If it deter-
mines that one of the nodes of an element is singular, it
changes the geometry of the problem. For weakly singular
points, it transforms the triangle into a degenerate square
to perform a different kind of integration (Gauss-Jacobi

integration). If it detects that one node is a strongly sin-
gular point, depSolver splits up the element into four
smaller triangles by connecting points on each edge.6 It
then performs Gaussian quadrature on the three subtrian-
gles that are not adjacent to the singular node, and splits
the remaining subtriangle into four even smaller triangles.
It repeats this process a specified number of times. The
final smallest triangle adjacent to the singular point will
have a value near zero, and is neglected.

Given this basic understanding of how depSolver
performs calculations, I will describe the structure of the
program I wrote to combine boundaryValueDouble,
depSolver, and the double-diameter cells.

3.2 Structure of the program

The basic flow of the program is this: construct a virtual
cell and choose a vortex configuration. Use the vortex
configuration to calculate the initial velocity field around
the vortex core at a specified mesh of points. Then, cal-
culate the velocity at the points that make up the cell
boundary, and find the components perpendicular to the
cell wall. Separately, send each Cartesian component of
these perpendicular components to depSolver, labeling
them as electric potential. Take depSolver’s solution for
potential at the mesh of internal points for each compo-
nent, and add them together to create a three-dimensional
secondary velocity field. Finally, add this solution to the
initial velocity field. This will cancel all components per-
pendicular to the cell wall, resulting in the velocity of
helium around the superfluid vortex core for a given vor-
tex configuration.

All of this is accomplished by executing one bash
script that runs each of the programs in turn, and passes
the appropriate information between files. For a more
detailed understanding of this process, I will discuss each
step in more depth. A visual of the program flow is also
provided in Fig. 12.

4This is not a detailed description of depSolver’s inner workings, nor do these elements always have to be triangles specified by three
points. For further detail, see the user’s manual at
https://code.google.com/p/depsolver/downloads/detail?name=depSolver UserManual.pdf&can=2&q=

5For more information on Gaussian quadrature, see http://en.wikipedia.org/wiki/Gaussian quadrature and
http://mathworld.wolfram.com/GaussianQuadrature.html

6Triangles may be split by connecting the midpoints of each edge, but I have not seen the code for this part of the calculation, so I
do not know for sure.

7



Figure 12: The flow of the program, run by a single bash script. As usual, program files are indicated in boldface and
text files in italic. Dotted arrows represent outside or input files used by the program. Solid black lines indicate the flow

of text files between programs (from the file that creates them to the file that uses them), and thick gray arrows
represent information being added to a file.

3.2.1 Setup: Cell, Vortex Configuration, and In-
ternal Points

There are two main Python programs that create the ini-
tial setup of the problem by constructing a virtual cell and
a mesh of points internal to the cell at which the velocity
will be calculated. These are createDenseBCs and cre-
ateDenseMesh, and they each output several files that
are used in conjunction with a few other, external files to
start calculations.

createDenseBCs creates the files that will eventu-
ally act as boundary conditions in depSovler. It reads
in parameters from a user-manipulated text file called in-
putfile. These parameters specify the dimensions of the
cell to be created, including the height of the cell and the
diameter of the lower and upper parts of the cell (which
can be set to the same number for a straight cylindrical
cell). The user can also specify the density of the nodes
that will make up the cell’s boundary.

createDenseBCs takes these parameters and creates
a cell in cylindrical coordinate system (see Fig.13). Using
the height of the cell and the number of z-values at which

nodes will be created (numZ, specified in inputfile), cre-
ateDenseBCs determines the spacing of these z-values.
It then iterates through 2π radians at each z-value and
creates nodes at user-specified number of θ-values (numR)
by calculating and recording their Cartesian coordinates.

Figure 13: The cylindrical coordinate system used
in createDenseBCs.

Because the purpose of this program is to determine
the behavior of a precessing vortex around the transition
between the two diameters of the cell, it is useful to in-
clude more boundary nodes near the diameter transition.
To this end, the user can specify an attentionRange in in-
putfile, in which the density of nodes is higher (the factor

8



by which the density is multiplied is also specified in in-
putfile). As createDenseBCs iterates through z-values,
it will check if it is in the attentionRange. If it is, it will
add nodes at the specified higher density.

The program also creates nodes at the top and bot-
tom faces of the cell. It does this by iterating through
r-values to create nodes at a single z-value (the top or
bottom of the cell). The number of circles of nodes it
creates is determined by the value of numdR in inputfile.

All of this creates nodes in the cell shape specified by
the user. An example of this is shown in Fig. 14.

Figure 14: Visualization of double-diameter cell
walls. The midsection contains more points,

because this is the section where we are interested
in finding accurate data.

The final step in creating the virtual cell is creating
boundary elements. For the most part, the creation of
these triangles is a simple process. Each row (one z-
value) of nodes is usually neighbored by a row with the
same number of nodes, and so can be connected as shown
in Fig. 15a. Complications arise, however, at the rows on
the edge of the attentionRange. These must be connected
differently, which is shown in Fig. 15b. In addition, the
connection of elements on the center of the faces of the
cell is not straightforward, and is also shown in Fig. 15c.

The second program involved in setting up the cal-
culations is createDenseMesh. This is the program
that generates the internal points at which the velocity
field will be calculated, always including points on the
boundary. It operates in much the same manner as cre-
ateDenseBCs, but at every z-value, it creates several
circles, again specified by numdR.

Both of these programs, createDenseBCs and cre-
ateDenseMesh, output several files. Some are format-
ted to be read into boundaryValueDouble (these are
the boundary nodes nodesOut.txt and the internal mesh
meshToCalc); some are formatted to be read directly into
depSolver (these are elemsBEM.txt and meshBEM.txt,
which specify the boundary elements and internal mesh
nodes); some are formatted to be plotted by gnuplot for a

visual check to determine if the program is working (these
are nodesViz.txt and meshViz.txt). In addition, parame-
ters from these programs like the number of nodes in the
boundary, the number of elements in the boundary, and
the number of nodes in the internal mesh are inserted
into a file called infoFile.txt, which is used later by dep-
Solver.

(a) Connection of nodes into
triangle elements, between
most rows of nodes on the

cell boundary.

(b) General connection of
nodes in rows on the border
of the attentionRange into

triangle elements.

(c) General connection
of nodes on the faces of

the cell into triangle
elements.

Figure 15: Various methods of connecting different
rows of elements.

3.2.2 Processing Setup to Send to Solver

The first substantial calculation is performed by bound-
aryValueDouble. This program was written by my pre-
decessors in lab, but I modified it to fit the needs of this
project. It takes in boundary and internal mesh infor-
mation (nodesOut.txt and meshToCalc.txt from create-
DenseBCs and createDenseMesh), as well as a vor-
tex configuration. This configuration is either straight
(around the wire) or off the wire (precessing), and comes
from existing files. The purpose of boundaryValue-
Double is to calculate the velocity of helium at different
points around a particular vortex core configuration. It
uses the fact that the velocity field around a vortex core is
analogous to the magnetic field around a current-carrying
wire. Because of this, it can find superfluid velocity values
using the law of Biot-Savart.

These calculations are called in boundaryValue-
Double twice. First, it takes the internal mesh of points
and finds the initial velocity field around the vortex. This
is output in meshToSum.txt. Second, it takes the bound-
ary nodes and calculates the velocity normal to the cell
wall at each. This information it output in boundValueRe-
sults.txt and will be used to find the secondary velocity
field.

Once these calculations are done, there are only a few
remaining processing steps required to prepare the infor-
mation to be sent to depSolver. The Python program
processorPreSolver takes in infofile (the file with the
number of boundary nodes, boundary elements, and in-
ternal mesh nodes) and boundValueResults.txt and out-
puts a nodesBEM.txt file that lists the boundary nodes
formatted properly for depSolver, and bcsBEM x.txt,

9



bcsBEM y.txt, and bcsBEM z.txt, which are the x, y, and
z components of the velocity field normal to the cell wall
formatted in a way such that depSolver can read them
in as electric potential. It also creates a file called in-
put.bem, which has information from infofile, formatted
in a way depSovler can read.

3.2.3 Calling depSolver and Calculating the Fi-
nal Velocity Field

Finally, depSolver is called three times, once for each
Cartesian component of the velocity field. As stated
above, depSolver requires an input file that gives it infor-
mation about the number of nodes, elements, dielectrics,
etc. involved in the problem (input.bem), a file of bound-
ary nodes (nodesBEM.txt), a file of boundary elements
(elemsBEM.txt), a file of the potential at each of the
boundary nodes (bcsBEM x, y, or z ), and a file of in-
ternal nodes (meshBEM.txt). It uses this information to
solve Laplace’s equation at the internal mesh nodes under
the constraint of the given boundary conditions.

Once results are returned from all three calls
of depSolver, in the files depSolverXOut toSum.txt,
depSolverYOut toSum.txt, and depSolverZOut toSum.txt,
the solution is almost complete. These three components
of the Laplace solution (secondary velocity field) must be
combined and added to meshToSum.txt (initial velocity
field). These are summed in the Python program pro-
cessorPostSolver and output as fullSolution.txt. This
is the velocity field within the cell.

3.2.4 A Note

My goal this summer was to create a program that pro-
duced a reasonable solution, which I checked visually by
plotting the final field using gnuplot. Once the program
started producing results that looked reasonable, I in-
tended to compare them with the known solutions for a
straight or partially-free vortex in a straight cell. Unfor-
tunately, I ran out of time. I was able to reach a point
where the solutions looked reasonable (see Fig. 16 for an
example), but could not verify this numerically. I did,
however, check depSolver by manipulating provided ex-
ample problems and solutions for the potential and elec-
tric field within parallel-place capacitors; in this context,
depSolver seemed to be functioning correctly.

4 Conclusion and Future Work

At the conclusion of this project, there are still several
pieces left to be finished. In terms of cell construction,

the rest of the four initially planned cells should be built,
tested, and compared with Ingrid’s results. This will al-
low the geometry-dependence of vortex stability to be de-
termined. To complete the coding project, the accuracy
of the solver needs to be verified, and then it should be
integrated into existing simulation code to step it through
time. This will allow for interesting analysis of vortex dy-
namics in the double-diametered cells, particularly at the
point when the vortex jumps between cell diameters—
the experimental data contains certain signatures at this
transition that we do not understand.

Figure 16: An example solution for a straight
vortex in a double-diameter cell, plotted using

gnuplot.

5 Acknowledgments

Thank you, Rena, for all your patience. In addition,
thank you to Luke Donev [1] and Ingrid Neumann [2];
most of the information in the introduction came from
their undergraduate and graduate theses.

References

[1] Luke Donev. Experimental methods and results on
the study of superfluid helium.

[2] Ingrid Neumann. Interactions between a superfluid
vortex and its bounding surface. PhD thesis, UC
Davis, 2012.

10


