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In order to gain a deeper understanding of how individual grain configurations affect the general behavior
of a mixture, the exact position of each grain must be recorded. Neural networks and heuristics are used to
analyze images of granular mixtures, determining the location of each hexagonal grain. The results are visually
represented by heat maps in order to give clues as to what trends should be investigated in future analysis.

I. INTRODUCTION

While granular materials have long been studied, a solid un-
derstanding of their complex behavior has yet to be formed.
General trends, such as segregation and pile stability, have
been observed and analyzed, but this sheds little light on how
the specific configuration of individual grains affects the be-
havior of the pile as a whole. In order to develop a model
that predicts general behavior given a specific configuration
of grains, detailed analysis of the mixture involving the loca-
tion of individual particles must be performed.

In this experiment, 1/8” diameter steel ball bearings took
the place of grains. Seven green bearings, colored to aid
in later analysis, were welded together to form hexagons,
and two silver bearings were welded to make doubles. Var-
ious concentrations of hexagons and doubles were added to a
drum. The bearings were confined to a single plane by two
sheets of Plexiglass. The drum was then rotated at 500 µHz,
and avalanches were recorded using a video camera. The
frames immediately before and after each avalanche were then
extracted from the video, and stored as image files (see Figure
1) [1].

The images were then analyzed using an IDL program
which found the angle of avalanche and density of the pile.
A correlation was found between the concentration of hexes
in the pile and the angle of avalanche, and a general pattern
of segregation was observed, as the doubles tended to rise to-
wards the middle of the surface. To analyze the mixture in de-
tail, however, it was necessary to record the location of each
hexagon within the pile. This required new IDL code, and a
combination of techniques.

II. TECHNICAL BACKGROUND

Autonomously finding the hexes was nontrivial. The most
obvious challenge was posed by the tendency of hexagons
to pack together. When this occurs, the border between two
hexagons becomes ambiguous, and it is difficult to determine
how many grains there are and where their centers are located,
even by eye. In especially dense regions, common in mixtures
with high concentrations of hexagons, a dozen or so hexagons
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FIG. 1: An extracted frame, showing the drum containing half hexagons
(green) by weight, half doubles (silver).

might pack tightly together. This forces someone inspecting
the mixture to find the hexagons on the outside of the clump
first, and then work his way inwards.

The situation was further complicated by the quality of the
images. Recording hours of avalanche footage in high defini-
tion was not technologically feasible at the time of the exper-
iment, so each image was taken at a resolution of 640 × 480
pixels. As a result, each 1/8” diameter ball had a radius of
two pixels. Because the steel balls reflected light, some silver
balls located near the green hexagons would themselves ap-
pear green. Combined with the low resolution of the image,
this resulted in patches of fuzzy information, where the color
of individual balls was ambiguous.

Furthermore, there were subtle changes in the apparatus
that made image analysis more difficult. The distance between
the camcorder and the drum was not kept constant over the en-
tire experiment, therefore the pixel radius of a ball is not the
same in every data set. Differences in lighting also caused the
brightness and saturation of images to fluctuate.

Finally, the pool of potential approaches was limited by the
amount of data to be processed. While there was no strict
limitation on running time, there were questions as to how
long a stochastic method, such as Monte Carlo, might take to
converge, given that there were roughly 4000 balls per image
and 3000 images in total. Ultimately, a Monte Carlo method
was avoided because no proper heuristic for error minimiza-
tion could be found, largely due to the fact that the image data
being analyzed was less than ideal.

The naı̈ve method of finding hexes would be to establish
some heuristic involving the angle between neighboring balls,
since the centers of the balls welded into the hexagons are al-
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FIG. 2: A summary of the scoring algorithm. The scoring loop (in blue) is repeated twenty to thirty times. After each run, the list of candidates and isolated
balls is narrowed, in effect “clearing up” the data for the next round.

ways separated by 60◦, and are four pixels from the hexagon’s
center. Unfortunately, this is an idealization. Firstly, the al-
gorithm previously developed to find the center of each ball
works by finding the bright glare from the overhead lights.
This is rarely located at the exact center of the ball, and, due
to differences in lighting, is not constantly placed. Therefore,
it is not possible to find the exact center of each ball with great
accuracy, and any measurement involving distances or angles
will incur a large margin of error. Secondly, even if this infor-
mation was close to ideal, it does not work well to differentiate
hexagons that are packed together.

Instead, a more complex set of heuristics is employed. A
scoring algorithm was developed that emphasized the scores
of obviously placed hexagons, such as those located on the
outer edge of packed clumps. Before initializing the scoring
loop, however, various categories are established to organize
the data. First, each ball is found and placed into an irregular

lattice. This is done by interpreting each ball in the image
as a node in a Delaunay Triangulation. By doing this, each
ball is connected to its nearest neighbors in a graph, and an
adjacency matrix is produced.

Next, the balls are categorized according to color. Green
balls that neighbor two or more silver balls are thought to be
on the outer edge of a hexagon, and are added to a list of
edge balls. Green balls that have no silver neighbors are added
to a list of candidates; these are likely to be the center of a
hexagon. Green balls that have no neighboring balls identified
as hexagon centers are added to a list of isolated balls.

Once this information has been organized, the scoring al-
gorithm proceeds as follows:

1. Assign Scores: Each green ball that has not yet
been included in a hexagon is given a value. This
value is increased by a multiplier if it is thought
to be an edge ball. Each candidate neighbor is



3

then given a score that is directly proportional to
the isolated ball’s value, but indirectly propor-
tional to the product of the distance between it
and the isolated ball and the number of candidate
neighbors the isolated has. Expressed in pseudocode:

for ball ∈ isolateds do

value← 1

if ball ∈ edge then
value← value ·multiplier
end if

;this will return the number of
;neighbors the ball has that are
;in the list of candidates
nc ← numcand(ball)

for each neighbor to ball do
d← dist(ball, neighbor)
score← score+ value

d·nc

end for

end for

2. Selection: If the ratio of a candidate’s score to the max-
imum score of one of its neighbors reaches a thresh-
old, it is added to a list of hexagon centers. The ratio
is used over the flat score to account for the fact that
regions dense with hexagons will naturally have high
scores due to the number of surrounding isolated con-
tributors, while solitary hexagons have low scores.

3. Cleanup: Hexagons that are found too close to one an-
other are deleted from the list. Following this, the can-
didate and isolated lists are updated to reflect changes in
the list of hexagon centers. By doing this, the number
of potential placements for hexagons decreases as more
are found, clearing up regions that were originally am-
biguous.

This loop repeats a set number of times, and the results are
analyzed.

This algorithm emphasizes finding hexagons that are ob-
viously placed on the outside of clusters, and then works its
way inwards, much like a human would do. It does this by as-
signing low scores to balls that are placed in dense regions,
thereby delaying their evaluation until more information is
known about the region.

Using this method, over 80% of the hexagons were found.
The remaining hexagons were missed largely due to “cleanup”
step of the algorithm. In images with densely packed
hexagons, small errors in the first few rounds would propa-
gate forward, such that there were few legal positions to place
a new hexagon in the later rounds. The hexagon would never-
theless be placed too close to one found in a previous round,
and both would be deleted from the list. Because of this,
hexagons located in the very center of large clusters would

often be missed. While several fixes were attempted, it soon
became obvious that any solution using heuristics would be
complicated.

As a result, neural networks were implemented in unison
with the scoring algorithm. Neural networks are the computa-
tional analogues of biological brains. Networks of simulated
neurons are trained with a set of inputs and expected outputs.
The synaptic weights connecting each node in the network are
then adjusted so as to minimize error. As a result, the neural
network is able to “recognize” trends in the data that may not
be obvious to a human analyst. The end goal is a network
that can generalize, such that it can produce the correct output
given input it was not trained on.

Neural networks were especially suited for finding
hexagons because they work well with fuzzy data. While
the scoring algorithm used hard-coded thresholds, neural net-
works use a series of synaptic weights that allow for error due
to noise and other real-world factors. Because of this, neural
networks are very efficient at recognizing patterns in image
data, just like their biological counterparts.

The training data for the neural networks used in this pro-
gram consisted of several thousand, 13 × 13 pixel bitmaps
of hexagons, as identified by a human operator. Also in-
cluded were samples of non-hexagons. Several networks were
trained using the Python FFNet module, each analyzing a dif-
ferent channel of the image. The FORTRAN code generated
by the Python module was then translated to IDL and included
in the original program.

Several of these networks formed a committee. Each ball
in the image would be passed through the committee, and, if
enough of the networks agreed, the ball was added to the list of
hexagon centers. While this method found virtually all of the
hexagon centers, it also found many erroneous centers, often
positioned in clumps. To correct for this, the same cleaning
procedure as used in the scoring algorithm is implemented.
The remaining hexagons are kept in a separate list, and those
that were deleted are evaluated a second time by the scoring
algorithm. Those with the highest scores are once again added
to the list of centers.

In all, the program goes through three distinct segments
while finding hexagons. First it uses only neural networks.
Next, it uses neural networks aided by a scoring algorithm to
reduce error. Finally, only the scoring algorithm is used. The
results from all three steps are then combined in a manner that
gives preference to the neural networks, as they were found to
be the more accurate of the two methods.

III. RESULTS AND ANALYSIS

Combining these two methods yielded excellent results. On
average, 98.5% of hexagons were found across usable data
sets. Out these, the exact center was located 95% of the time.
There were two data sets that did not perform well, as the
program struggled to find 90% of the hexagons. This is due
in part to the fact that the camera was placed considerably
farther back in these two sets, and the lighting is significantly
different. Given that there are similar data sets that performed
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FIG. 3: Smooth binning, showing the segregation of the mixture. Taken
from data spanning 70 avalanchess.

very well under the same algorithm, these under-performing
images may be considered outliers. Furthermore, the sets in
question are of limited use in analysis, due to the fact that they
each consist of mostly all hexagons or all doubles.

The combination of the neural networks with the scoring
algorithm represented the most efficient method of finding
hexagons. Separately, each approach was mediocre. The neu-
ral networks were good at working with less than ideal data,
whereas the scoring algorithm was not, due to its hard-coded
parameters. On the other hand, the neural networks lacked
global perspective, since there was no way to account for the
number of expected hexagons per image or other constraints
during training. This is where the scoring method was advan-
tageous. By using both methods in parallel, the final result
was optimized.

In order to quickly visualize trends in the resulting data,
heat maps were generated. “Smooth” binning assigned a
range of of scores to hexes, depending on their distance from
the binning node. “Spot” binning only assigned scores to
hexagons within a very limited distance of the node. Smooth
binning thus emphasizes the density of a region. If many
hexagons are packed into an area, the center of the area will
accumulate a great amount of “heat.” Spot binning, on the
other hand, promotes frequency. If a hexagon was near a spe-
cific node in a large number of images, that node will have a
higher score.

Various general trends were reinforced by analyzing the
heat maps, and possible new correlations were identified. One
behavior previously recognized was the segregation of grain
sizes. After only a few avalanches, hexagons would gather
along the bottom of the drum, while doubles would rise to-
wards the middle-center. This is especially evident in the heat
maps (see Figure 3). Warmer colors, representing a high fre-
quency of hexagons in the region, cluster along the outer rim
of the drum. Moving toward the center, a sharp boundary oc-
curs at a constant radius. Looking at a single avalanche, this
boundary is not as apparent.

Striation is a common property of granular materials, but
one not immediately obvious in this experiment. Neverthe-
less, spires can be seen growing from the outer edge of the
drum up towards the center, especially in the spot heat maps
(see Figure 4, Appendix). This is caused by hexagons stack-
ing on top one another in image after image.

A possible new trend shown by the heat map re-
lates hexagon positions to the angle at which the mixture
avalanches. Two heat maps were made; one using data from
the five avalanches with the highest angles, and one with data
from the five lowest. When compared, it was seen that the
piles that avalanched at lower angles had greater concentra-
tions of hexagons in the bottom right of the heap (Figure
5, Appendix). The mixtures with high angles of avalanche
tended to have clusters of hexagons in the upper left of the
drum (Figure 6, Appendix). Upon inspection, it appears that
the avalanche often begins with the grains located in the up-
per left corner of the heap. Results from previous experi-
ments show that the stability of hexagon and double mix-
tures is inversely proportional to the concentration of doubles.
Therefore, it makes sense that a greater concentration of the
more stable hexagons in the region responsible for starting
avalanches might lead to a higher angle of collapse. Unfortu-
nately, though this trend is visible in several concentrations, it
is not strongly represented. Nevertheless, this trend is worthy
of further investigation.

IV. FURTHER RESEARCH AND CONCLUSION

The updates to the program allow it to find individual
grains, enabling in-depth analysis of the mixture and its grain
configuration. In order to gain more useful results, several
additional steps could be taken.

In order to generate more conclusive heat maps, more im-
age data could be recorded. The current heat maps showing
a possible correlation between hexagon positioning and angle
of avalanche suffer from the small number of samples avail-
able to them. On average, there are 60 sample images per
concentration. Taking 10% of the avalanches from the ex-
tremes of the angle distribution yields only six images worth
of data per heat map. If several hundred additional images of
one concentration could be recorded, any correlations evident
in the resulting heat maps could be accepted with much more
confidence.

An interesting extension of the project would involve us-
ing a high speed camera to capture many frames of a single
avalanche. The program could then be amended to trace the
paths of individual avalanches as they move through the mix-
ture. This would shed light on where avalanches begin, and
which grains are most affected. Because it is not feasible
to record for any sizable amount of time using a high speed
camera, and avalanches cannot be anticipated, this method
would require some method of triggering the recording once
an avalanche is detected. The current implementation of the
hexagon identification program is not fast enough to be able to
optically identify an avalanche in real time, therefore another
method, such as a microphone trigger, would need to be used.
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Furthermore, the current program is restricted to identifying
hexagons only. In future experiments, it might be desirable to
look at mixtures of different shapes, such as diamonds and
doubles. Doing so would require more than a simple rewrite
of the code, since it makes crucial assumptions based on the
fact that it is identifying only hexagons. The combined neural
network and heuristic approach, however, has been validated
by the search for hexagons, therefore it could be applied to

other shapes as well.
It has thus been shown that a reasonable method exists

for identifying specific grains in images of granular mix-
tures. This allows for analysis of individual configurations,
rather than the traditional study of the generic behaviors of a
mixture as a whole. Possible trends were identified that de-
serve further investigation, and the use of heat maps was vali-
dated as a tool for visualization.

[1] For more information, see Segregation and Stability of Granular
Mixtures, Swartz et al
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FIG. 4: Spot heat map showing striations. Note the bands of orange rising into the green area.

FIG. 5: A spot heat map using data from the five lowest angle avalanches in the 40% concentration. Note the cluster of hexagons in the bottom right.
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FIG. 6: A spot heat map using data from the five highest angle avalanches in the 40% concentration. In this case, the hexagons appear to cluster in the upper
left region.


