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We present the results of numerical simulations of physical constants as a function of the scale and
time-space asymmetry parameters in the framework of Causal Dynamical Triangulations in (2+1)
dimensions. We focus on the properties of the model under symmetric and asymmetric scaling of
simplices with respect to the time axis. We find that the uniform scaling parameter a has no effect
on the physics of CDT other than setting the length units, and conclude that the scaling in this
model is isotropic. In contrast, the α parameter which scales timelike but not spacelike lengths
affects various aspects of the model. We report the results of changing the timelink lengths on
bare constants Λ and G−1, as well as develop a spacetime phase diagram that exhibits a nontrivial
dependence on α under two distinct regimes. In addition, we present the α dependence of the time
evolution of spacetime ensembles, measured using volume-volume correlators of the spacetimes.
These suggest that changing α within the physical phase has effects other than simply scaling rate
of time evolution which are not presently well-understood.

INTRODUCTION

Causal Dynamical Triangulations (CDT) is a discrete
quantum gravity theory which seeks to describe space-
time through the basic principles of quantum mechan-
ics. It was developed by Loll, Ambjorn, and Jurkei-
wicz as a Lorentz variant on the largely unsuccessful Eu-
clidean lattice theories [1]. The goal of CDT is to create
a non-perturbative theory of the behavior of spacetime
at all scales by calculating a gravitational path integral
over geometries (i.e. metrics distinct under diffeomor-
phism) of spacetime. The calculations in 3 and 4 di-
mensions are performed almost exclusively numerically,
through dynamical triangulation of discrete geometries.
Dynamical triangulation, closely related to the Regge cal-
culus method [2], provides a systematic method of ap-
proximating a spacetime with a discrete lattice, and of
discretizing the corresponding action. The spacetimes
are constructed with an explicit time dimension and a
Lorentzian action.

The CDT approach has yielded promising results, in-
cluding accurate dimensionality on large scales [3] and
time evolution matching that of de Sitter space [4] even
though a background geometry is never introduced into
the computations. Additionally, unusual features have
become apparent, such as a reduced spectral dimension
on short scales, as well as quantum fluctuations on the
emergent background spacetime which match analytic
minisuperspace models [5]. This progress encourages
futher investigation of the CDT model as a viable theory
of quantum gravity.

We begin with a brief overview of Causal Dynamical
Triangulations and the simulation methods; a more thor-
ough description can be found in Zhang [6]. We present
the results of investigating the space and time scaling
behavior of the (2+1) dimensional theory, followed by
a discussion of possible interpretations of the spacetime
simulations.

BACKGROUND

Gravitational Path Integral

The path integral central to Causal Dynamical Tri-
angulations is performed over the space of geometries,
that is the space of smooth manifolds (spacetimes) with
a fixed dimension and topology, and possessing a met-
ric field tensor gµν [7]. The integral is only carried out
over inequivalent geometries, such that diffeomorphisms
of the same metric are not double counted. In analogy
to the Feynman path integral, we integrate over the field
degrees of freedom represented by gµν :

G(g0, g1; t0, t1) =
∫

metrics
diff

DgµνeiS[g] (1)

where S[g] is the standard Einstein-Hilbert action:

S[gµν ] =
1

16πG

∫
dnx

√
−|g|(R− 2Λ) (2)

Numerical Calculations

The analytical analysis of Eqn. 1 is extraordinarily dif-
ficult and has not been fully carried out in 3 and 4 di-
mensions. A statistical approach has been developed in
which the path integral is performed numerically using
the Monte Carlo method. The integral can be discretized
by triangulating the manifolds using dynamical triangu-
lation, a more restricted form of Regge calculus in which
edge lengths of the simplices are held fixed and the cur-
vature is determined by the number of simplices which
meet at a hinge [2].

There are two types of simplices from which the trian-
gulations are constructed, pictured in Fig. 1.
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FIG. 1: The two simplex geometries in (2+1) dimensions,
(3,1) (a) and (2,2) (b).

In constructing the spacetime lattice we enforce a
causal structure by allowing only specific configurations
of spacetime. We introduce a ‘time’ direction by splitting
the spacetime into (n − 1)-dimensional spacelike slices.
This is visualized in Fig. 2. The simplices are labeled by
the number of vertices in the two adjoining time slices.
For example, a (3,1) simplex has three vertices in the t
slice and one in the t + 1 slice, while a (1,3) simplex is
the inverse.

FIG. 2: Two timeslices at t and t+ 1 and three possible ways
of fitting simplices in between.

From one time slice to the next, no topology change
can occur; thus, this restriction prevents singularities of
the metric and branching into ‘baby-universes’, which vi-
olate causality.

Using dynamical triangulations, we rewrite the contin-
uum path integral (Eqn. 1) as a sum over inequivalent
triangulations T :

Z =
∑
T

m(T )eiS(T ) (3)

where m(T ) is the measure on the space of triangula-
tions. By applying the principles of Regge calculus, the
continuous Einstein-Hilbert action (Eqn. 2) becomes

S[T ] = −k0N0 + k3N3 + ktT (4)

Here N0 is the number of vertices, N3 is the number of
simplices, and T is the number of time slices. Constants
k0, k3, kt depend on the geometry of the simplices (vol-
ume and angles), as well as on fundamental constants Λ

and G, the cosmological and Newton’s constant, respec-
tively.

To calculate the sum over the discretized triangula-
tions, we perform a Wick rotation and rewrite the sum
in Eqn. 3 as a partition function:

Z =
∑
T

m(T )eiSLorentz(T ) → Z =
∑
T

m(T )e−SEuclidean(T )

(5)
This enables us to use Monte Carlo methods to perform

the sum.
The moves used in the Monte Carlo sample the en-

tire space of triangulations for a fixed topology; they are
described in detail in [8]. The moves rearrange the ge-
ometry of the triangulation while preserving the topol-
ogy and causal structure. These moves change the local
curvature of the spacetime by splitting, combining, or
rotating adjoining simplices - see for example Fig. 3.

FIG. 3: The 2-6 move. A (3,1) and (1,3) simplex sharing
a spacelike triangle are each split into three (3,1) simplices.
This move adds one point and four simplices, incrementing
N0 by 1 and N3 by 4, respectively. The inverse 6-2 move is
also possible if the configuration on the right is present in the
triangulation.

MOTIVATION: TIME-SPACE ASYMMETRY

In dynamical triangulations, the edge lengths of the
simplices are kept fixed, and in most (2+1) simulations
all the lengths have been set to 1 for simplicity [8]. In
general, we can distinguish the spacelike link length l2s =
a2 and the timelike link length l2t = −αa2. Here a is the
scale parameter, setting the overall ‘size’ of the simplices,
and α is the asymmetry parameter that determines the
ratio of time to space edge lengths.

While the calculations of the physical properties of the
spacetime in (2+1) dimensions have been performed al-
most exclusively for a, α = 1, the calculations in (3+1)
have been performed for smaller values of α; in fact, it is
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likely that in four dimensions the physical phase of the
spacetime only appears for α < 1. The motivation for
this project was the investigation of the phase diagram
in the (2+1) model as a function of α and a in connection
to the (3+1) case presented in [5].

In general, investigating the asymmetry parameter ad-
dresses key questions. The crucial feature of CDT as
compared to earlier Euclidean triangulation theories is
the time axis, so it is important to understand the scal-
ing of the time relative to the spatial dimensions and
explain whether the time axis is solely preventing baby
universe creation or has other effects on the structure
of the resultant spacetime. Also we seek to test scaling
properties of the spacetimes, which would probe ques-
tions of Lorentz invariance and the relation of CDT to
anisotropic models.

The angles and volumes of simplices as functions of
arbitrary a and α are derived in [7]. The general form of
the action in (2 + 1) dimensions is [1]:

S[T ] = (4ak(K1 −K2)− 4a3λ(L1 − L2))N0 (6)

+ (ak ·K2 − a3λ · L2)N3

+ (4ak(−π
√
α− 2(K1 −K2)) + 8a3λ(L1 − L2))T

where the constants K1,K2, L1, L2 in the action are func-
tions of α only:

K1 = π
√
α− 3arcsinh

1√
3
√

4α+ 1
− 3
√
α arccos

2α+ 1
4α+ 1

K2 = 2π
√
α+ 2arcsinh

√
8(2α+ 1)
4α+ 1

− 4
√
α arccos

−1
4α+ 1

L1 =
√

3α+ 1
12

L2 =
√

2α+ 1
6
√

2
(7)

In the construction of the Wick rotation, the (2, 2) sim-
plices degenerate at α = 1/2, that is their volume goes
to 0 [7]. Thus the method of approximating the action
via Monte Carlo breaks down for values of α of 1/2 and
smaller. In the following analysis, we consider a represen-
tative range of values of α from 0.51 to 10.0 and a from
0.6 to 2.0; these were found to be representative and ex-
cepting α ≤ 0.5 no changes in behavior of the model are
observed or expected outside of these values.

SIMULATION PROCEDURE

In order to perform calculations, we must set the num-
ber of time slices T and total volume V of the space-
time. Larger volumes are usually more accurate due to
finite size lattice effects; however, large volumes are very

computationally expensive. We use V = 16, 000 and
V = 32, 000 depending on the calculation.

For each simulation, we set the geometry of the sim-
plices, which is determined by the parameters a and α:

l2s = a2 l2t = −αa2 (8)

where ls and lt are the spacelike and timelike link lengths,
respectively. Here, a has dimensions of length and α is
dimensionless.

In addition we set the fundamental constants which
enter the action. We denote k = 1/(8πG), where G is
the bare gravitational constant, and λ = kΛ, where Λ is
the bare cosmological constant.

Each time slice has S2 topology, though we should em-
phasize that no background geometry is set or assumed.
We impose periodic boundary conditions (S1 topology)
on the time direction for ease of calculation. The initial
configuration of the spacetime is the minimal triangula-
tion of the S1 × S2 topology.

In order to perform measurements of physical observ-
ables of the spacetime, we must take an ensemble aver-
age over many sweeps (a sweep is defined as V attempted
Monte Carlo moves, where V is the total volume); a sin-
gle sweep is interpreted as a quantum fluctuation of the
spacetime itself, with no direct physical interpretation.
Thus we measure observables as an average over many
sweeps. Before performing any calculations, we first ther-
malize the spacetime, that is perform on the order of
100, 000 random sweeps so the starting configuration is
randomized and not dependent on the artificial initial-
ization of the spacetime.

RESULTS

Bare Constants: α Dependence

In order for the state sum to converge in the first place,
we have to tune the bare cosmological constant λ to its
critical value λc(k) to obtain a continuum limit [8]. The
critical value of the cosmological constant is a function
of the inverse bare gravitational constant k = 1

8πG [8].
For values of λ above the critical, the spacetime quickly
shrinks to a minimal value, and for λ below the critical
value, the sum diverges and the volume grows exponen-
tially as the simulation runs. Since the system is very
sensitive to changes around this critical value, we intro-
duce an extra term in the action δS = ε|N3 − N init

3 |,
with ε � 1, which keeps the volume roughly constant
and the sums from diverging in a finite neighborhood of
λc without affecting the dynamics. For the purposes of
the simulation we find ε = 0.02 to be a well-suited value.

As a first step to studying the effect of tuning the asym-
metry parameter α on the spacetime we look at the be-
havior of the λc(k) curve as a function of α. For these
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measurements, the scale parameter a is held fixed at 1.
The results for representative values of α from 0.6 to 10
are shown in Fig. 4.

FIG. 4: Critical values of bare constant λ as a function of k,
for different values of the time-space asymmetry α.

The λc curves were calculated using code that steps
through values of k and loops through corresponding val-
ues of λ, evaluating the behavior of the spacetime in
terms of whether the volume is diverging or collapsing
(See Appendix ). If the volume stays constant to a speci-
fied precision, over a given number of sweeps, the current
value of λ is accepted as λc. In the simulations presented
here, the precision used was 5% or less over 2000 moves.
For the purposes of this simulation, we use a relatively
small spacetime (volume V = 16, 000, number of times-
lices T = 16) for speed of calculation. Sample values for
larger spacetimes were found to be consistent with these
results.

Phase Transition

Spacetimes with constants tuned to give the contin-
uum limit do not always result in a physically significant
spacetime geometry. For α, a = 1, two distinct phases of
the spacetime exist, ‘extended’ physical phase at small
k and the ‘decoupled’, or unphysical, phase at large k
[8]. A visualization of the phases is presented in Fig. 5,
where the horizontal axis represents the time slice and
the radial direction represents the spatial volume at that
slice. In the decoupled phase, multiple separate slices
like the one shown in Fig. 5(b) can appear and evolve
independently of one another. In the extended phase,
neighboring slices are strongly coupled. Note that the
three dimensional figures are rendered for ease of visual-
ization only; the individual spacetimes are not necessarily
rotationally symmetric about the time axis.

The two phases can be quantitively distinguished by

(a)Extended Phase

(b)Decoupled Phase

FIG. 5: The two phases of spacetime in (2+1) dimensions.
In the decoupled phase, multiple separate slices like the one
shown in (b) can appear and evolve independently of one an-
other. In the extended phase, neighboring slices are strongly
coupled (a). These spacetimes were generated at T = 64
and V = 32, 000. At larger volumes, more visible slices often
appear in the decoupled phase.

calculating the ensemble average of the order parameter
P = N22/N3, the number of (2,2) simplices divided by
the total number of simplices in the spacetime. For space-
times in the extended phase, P is a finite value between
0 and 1 (generally between 0.3 and 0.5). As the value
of k increases, the spacetime transitions to the decou-
pled phase and the value of the order parameter drops to
P ≈ 0. In this and subsequent results, as we change the
value of k, we change λ as well to keep it at the critical
value λc(k); otherwise the spacetime becomes ill-defined.

α Dependence

The phase transition point in k was studied as a func-
tion of α by calculating the point where the order pa-
rameter drops to 0. The results are plotted in Fig. 6. At
α ≈ 0.75, the phase transition occurs at a minimum value
of k = 0.525 ± 0.025. For 0.5 < α < 0.75 and α > 0.75,
the transition occurs at higher values of k.

In these measurements, the spacetimes were generated
at volume V = 16, 000 and T = 16 time slices. Each
point in the order parameter plot was calculated on ther-
malized spacetimes (50, 000 initial sweeps) and averaged
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FIG. 6: The phase transition as measured by the order pa-
rameter. The phase transition occurs at different points de-
pending on the value of α.

over 50, 000 sweeps. Running the simulation at higher
spacetime volume or longer thermalization sweeps did
not affect the results.

The results can be summarized in a phase diagram as
a function of α and k as seen in Fig. 7.

FIG. 7: The transition between the two spacetime phases
depends on both k and α. The value of λ is set to λc(k) as k
is varied.

a Dependence

A similar measurement was carried out to investigate
the order parameter dependence on the overall scale pa-
rameter a. While α is dimensionless, a has units of
length, so to see whether the phase transition depends
on a in an essential way, we plot the order parameter P

against the dimensionless quantity k · a (Figure 8). The
transition takes place at the same point ak = 0.575±0.05
for a varying between 0.6 and 2.0. Here α = 1 for all
curves.

FIG. 8: The phase transition measured through the order
parameter. The transition takes place at the same point ak =
0.575 ± 0.05 for a varying between 0.6 and 2.0. Here α = 1
for all curves.

Volume-Volume Correlator: α Dependence

To get an understanding of the time evolution of the
spacetime ensemble, we use the volume-volume correla-
tion function C(∆)[6]:

C(∆) =
1
T 2

T∑
t=1

〈N2(t)N2(t+ ∆)〉 (9)

where T is the total number of time slices and N2 is
the spacelike volume of the slice at time t. The volume-
volume correlator was measured for a range of spacetimes
for different values of α. The behavior of the volume-
volume correlator function is dependent on the value of k
[8], so for consistency all the simulations were performed
at k = 0.2, which falls in the extended phase of the space-
time for all the relevant values of α.

As this calculation is more sensitive to spacetime size,
we use V = 32, 000 and T = 64. The spacetimes are
thermalized for 200, 000 sweeps and the measurement is
taken as an average over a sample of 200 spacetime fluc-
tuations out of 100, 000 sweeps. The results are shown in
Fig. 9.

The data is fitted to the time evolution of the de
Sitter solution to Einstein’s equation in 3 dimensions,
t ∝ cos2(Ht) where H is Hubble’s constant (the so-
lution is Wick rotated to match the Euclidean method



6

FIG. 9: Volume-volume correlator function for different values
of α. The data is fitted to the time evolution of a de Sitter
solution to Einstein’s equation, t ∝ cos2(Ht).

of computing CDT sums) [4]. The fit parameter H is
then plotted against α in Fig. 10. In the simulations,
the extended spacetime is confined to a part of the time
axis and surrounded by ‘stalks’ of minimal spatial extent
(see Fig. 5(a)). As the ‘stalk’ is not part of the physical
evolving spacetime, we exclude it by restricting the fits
to the top 90% of C(∆) values. The fits have R-squared
values > 0.999 and the error bars represent the 95% con-
difence interval on the fit parameter. Values of H for in-
dependent spacetimes with equivalent parameters agree
to within the fit precision.

DISCUSSION

Bare Constants: α Dependence

There is a clear dependence of the λc(k) curve on α
(Fig. 4): as α increases from 1 to 10, the values of λ
decrease and the curve becomes more shallow. As α de-
creases toward α = 0.51, λc increases sharply, especially
at higher k. This behavior is consistent with the cur-
vature of spacetime changing as α varies. The connec-
tion between α and λc can be understood as follows: the
background spacetime which emerges from the CDT cal-
culations closely resembles the fully symmetric solution
to Einstein’s equations, a 3-sphere with radius R ∝ Λ1/2

eff .
Thus constraining the volume of the spacetime as we do
for the purposes of the simulation is equivalent to setting
the effective cosmological constant Λeff ∝ V −2/3.

At the same time, changing α changes the volume of

FIG. 10: Hubble constant H, derived as a fit parameter of the
time evolution of spacetimes at different α values. Error bars
represent the 95% condifence interval on the fit parameter.

the simplices, thereby changing the volume of the space-
time. The volumes of the (3,1) and (2,2) simplices both
scales as

√
α [7]:

V ol(3, 1) =
1
12
√

3α+ 1

V ol(2, 2) =
1

6
√

2

√
2α+ 1 (10)

so lowering α will decrease the spacetime volume and
increase the effective cosmological constant. We empha-
size here that the constant λ in the action and the simu-
lations is proportional to the bare cosmological constant
and cannot be directly compared to Λeff ; however, there
is a relationship between the effective constant and con-
tinuum limit value λc that is clearly demonstrated by the
λc dependence on α.

Phase Transition

In order to calculate the phase transition point we use
the order parameter P = N22/N3. It is not clear whether
the order parameter should have any continuum limit in-
terpretation, but it has been found to accurately describe
the transition between the extended and the decoupled
phase [8]. This parameter can be intuitively understood
as follows. The (3,1) and (1,3) simplices are effectively
triangulations of the 2-dimensional spacelike slices, with
only a point in the next slice (see Figure 1). Thus, the
way that spacelike surfaces can be triangulated with the
bases of (3,1) simplices is independent of the triangula-
tions of the surrounding time slices. The (2,2) simplices,
on the other hand, connect neighboring time slices. At
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low counts of (2,2) simplices, the (3,1) simplices domi-
nate and the spacelike surfaces become decoupled from
each other as separate 2-dimensional triangulations that
evolve independently. This corresponds to the decoupled
phase, which has order parameter P = N22/N3 ≈ 0. For
higher values of N22, the slices become coupled through
(2,2) simplices, and the spacetime shifts into the ex-
tended phase. For a more detailed analysis, see [8].

α Dependence

As seen from the phase diagram Fig. 7, there are two
phases that appear for a range of k and α values. These
phases are qualitatively equivalent to the decoupled and
extended phases which exist at α = 1. We find no third
phase for other α values, in contrast to the results in
(3+1) dimension where three phases were found, and the
physical extended phase was only present for α < 1 [5].
This result is understandable, as the third phase in 4 di-
mensions was unphysical and may be an artifact of the
lattice approximation that only occurs in higher dimen-
sions.

We do observe an interesting feature of the diagram,
which possesses two distinct regions. For α < 0.75, the
dependence on k of the phase transition is very steep: for
α = 0.7 the transition from the extended to the decoupled
phase takes place at k = 0.675 ± 0.025, where as for
α = 0.6, the critical value is k = 4.05 ± 0.05. On the
other hand, for α > 0.75. the critical value of k decreases
very slightly with descreasing α.

We consider whether the value α = 0.75 is of math-
ematical significance in the action. Since the phase
structure is closely related to the order paremeter P =
N22/N3, we choose to rewrite the expression for the ac-
tion (Eqn. 4) as

S[T ] = k22N22 + k31N31 + k1N1 (11)

where N22 is the number of (2,2) simplices and N31

the combined number of (3,1) and (1,3) simplices, and
k22, k31 are the corresponding constant coefficients [7].
Calculating the relative ratio of the coefficients provides
information about the relative importance of each type
of simplex in the action as a function of α. The result is
shown in Fig. 11.

With respect to the action, the value α = 0.75 is in-
deed special, where it represents a transition between two
regimes: at small α, where the weight of (2,2) simplices
in the action is rapidly growing, and at large α, where the
importance of (2,2) simplices is slowly decreasing. These
two behaviors may explain the two distinct regions of the
spacetime phase diagram that are apparent.

FIG. 11: k22/k31, representing the relative weights of
(2, 2) vs. (3, 1) simplices in the action as a function of α.
The functional behavior changes at α = 0.75, denoted by the
vertical line.

a Dependence

We find that the phase transition as a function of
the dimensionless quantity k · a is independent of a,
the length of the edges. The transition takes place at
ka = 0.575±0.05 independent of the value of a. Judging
from the phase transition, we conclude that the scaling
of the spacetime in CDT is isotropic.

Volume-Volume Correlator: α Dependence

The dependence of the Hubble constant on α (Fig. 10)
can be split into two distinct regions similar to the phase
diagram dependence. At α & 0.75, H remains approx-
imately constant within the fit precision. This suggests
that for α > 0.75, the time-space asymmetry acts simply
as a scaling factor, stretching the simlpices in the time
direction. However, for α < 0.75, the Hubble constant
is strongly dependent on alpha, increasing by nearly a
factor of two between α = 0.51 and α = 0.6. This may
indicate a different physical regime, or the breakdown of
the model as we approach the degenerate value α = 0.5.
In either case, this result is very important to under-
standing the physical interpretation of the CDT theory.

CONCLUSION AND FUTURE WORK

We present the results of studying the dependence of
the 2+1 CDT model on two scaling factors, a and α. By
calculating the phase transition points between physical
and decoupled spacetime regions, we conclude that the
spacetime is invariant under scaling of a, and that the
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model is isotropic.
The phase diagram with respect to the time-space

asymmetry parameter α contains two distinct regimes,
α < 0.75 and α > 0.75. We expect that the two regions
of the phase diagram result from the interaction of (2,2)
and (3,1) simplices in the triangulation, as the behavior
of the relative weights of the simplices changes at the
transition point α = 0.75.

In addition, we find an interesting scaling of the time
evolution of the spacetimes as a function of the α param-
eter. Again, we note two different regimes, separated by
α = 0.75. While for large α, the parameter the evolution
in time is approximately constant, at large α the depen-
dence is non-trivial and remains to be interpreted. The
data can be improved by running simulations at higher
spatial volumes and numbers of time slices. Acquiring
more precise data points is very important to reaching
conclusive results for time axis scaling and the H vs.
α dependence, both at high and low α. Understading
the properties of the different regions of the model in α
is crucial to interpreting the triangulations as physical
spacetime fluctuations, and judging the role of the time
axis in Causal Dynamical Triangulations.
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1 ; ; runlambda . l i s p
2 ; ;Masha Baryakhtar , August 17 , 2009
3

4 ; ; some code− spec i f i c parameters
5 (defparameter ∗ lambda−step∗ 0 . 0 1 )
6 (defparameter ∗BIG∗ 1000)
7 (defparameter ∗ p r e c i s i o n ∗ 0 . 05 )
8 (defparameter ∗hi−bound∗ 1 . 5 )
9 (defparameter ∗ lo−bound∗ 0 . 6 )

10 (defparameter ∗T∗ 16)
11 (defparameter ∗ lambda−c∗ 2 . 6 8 )
12

13 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
14 ; ; l oad a l l the main f i l e s
15 ( load ”/home/ baryakhtar /Documents/cdt−common−lisp/2 plus1 / l o a d− f i l e s . l i s p ” )
16

17 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
18 ; ; s e t s t a r t i n g cons tan t s
19

20 ( set f eps 0 . 0 2 )
21 ( set f NUM−SWEEPS 2000)
22 ( set f SAVE−EVERY−N−SWEEPS (/ NUM−SWEEPS 10))
23

24 ( format t ”∗∗∗ Set cons tant s ∗∗∗ . ˜%
25 eps = ˜A kk = ˜A lambda = ˜A alpha = ˜A a = ˜A NUM−SWEEPS = ˜A SAVE−EVERY−N−SWEEPS = ˜A˜2%”
26 eps kk llambda alpha a NUM−SWEEPS SAVE−EVERY−N−SWEEPS)
27

28 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
29 ; ; p r i n t s out spacet ime s i z e to screen
30 ; ; used f o r tuning the kk and lam parameters ( runlambda . l i s p )
31 ; ; r e turn 1 f o r e xp l od ing ( lambda too low ) , −1 f o r c o l l a p s i n g ( lambda too h igh )
32 ; ; and 0 i f on lambda−c
33

34 (defun generate−spacetime−data−console (& opt i ona l ( start−sweep 1) )
35 ( let ∗ ( ( end−sweep (+ start−sweep NUM−SWEEPS −1)) ( tots imp 0 . 0 ) ( avg 0 . 0 ) )
36 (do ( ( ns start−sweep (1+ ns ) ) ) ((> ns end−sweep ) )
37 ( sweep )
38 (when (= 0 (mod ns SAVE−EVERY−N−SWEEPS) )
39 ( format t ” s t a r t = ˜A end = ˜A current = ˜A count = ˜Ã %”
40 start−sweep end−sweep ns ( count−al l−types ) )
41 ( format t ”∗∗ avg = ˜A ∗∗˜%” avg )
42 )
43

44 ; i f s imp lex count too f a r from i n i t i a l va lue , lambda i s not a t lambda−c .
45 ; r e turn 1 f o r too big , −1 f o r too sma l l
46 (when (> (N3) (∗ N−INIT ∗hi−bound ∗ ) )
47 ( return−from generate−spacetime−data−console 1 ) )
48

49 (when (< (N3) (∗ N−INIT ∗ lo−bound ∗ ) )
50 ( return−from generate−spacetime−data−console −1))
51

52 ; d i v i d e by 1000 to keep numbers sma l l . keep t rack o f avg spacet ime s i z e
53 ; weigh average by sweep number to make l a t e r sweeps matter more
54 ( incf tots imp (/ (∗ (N3) ns ) ∗BIG∗) )
55 ( set f avg (/ tots imp (/ (+ ns (expt ns 2) ) 2 ) ) )
56

57

58 ; i f average g e t s too f a r from i n i t i a l i z e d value , re turn 2 f o r lambda too sma l l
59 ; −2 lambda too sma l l . on ly t e s t a f t e r some number o f sweeps b/c in the beg inn ing
60 ; s i z e tends to f l u c t u a t e a l o t , esp toward low numbers
61 (when (> (∗ avg ∗BIG∗) (∗ N−INIT 1 . 1 5 ) )
62 ( return−from generate−spacetime−data−console 2 ) )
63 (when (and (> ns (/ end−sweep 4) ) (< (∗ avg ∗BIG∗) (∗ N−INIT 0 . 7 ) ) )
64 ( return−from generate−spacetime−data−console −2))
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65 ( i f (= ns end−sweep )
66 ; ; i f code running too long , inc rea se t o l e r anc e by 1% to prevent g e t t i n g s tuck
67 ( i f (> end−sweep (∗ NUM−SWEEPS (∗ ∗ p r e c i s i o n ∗ 100) ) )
68 ( incf ∗ p r e c i s i o n ∗ 0 . 0 1 )
69

70 ; on l a s t sweep , i f s i z e f l u c t u a t i o n s are too b i g (>p r e c i s i on %), add more i t e r a t i o n s
71 ( i f (> (abs (− (∗ avg ∗BIG∗) N−INIT) ) (∗ N−INIT ∗ p r e c i s i o n ∗ ) )
72 ( incf end−sweep NUM−SWEEPS)
73 )
74 )
75 )
76

77

78 ) )
79 ; i f s u c c e s s f u l re turn 0
80 0
81 )
82

83 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
84 ; ; runs over lambda va l u e s and re tu rns lambda−c f o r a g iven kk
85 (defun calc−lambda (&key ( a 1 . 0 ) ( alpha −1.0) ( kk 0 . 0 ) ( llambda 0 . 0 ) )
86 ( let ∗ ( ( s t 0) ( kkcurr kk ) ( lambda−curr llambda ) )
87

88 ; ; c a l c u l a t e s the ac t i on c o e f f i c i e n t s ( f o r monte−carlo . l i s p ) to speed up computation .
89 ; ; has inpu t s o f l i n k l e n g t h s and fundamental cons tan t s
90 ( ca l cu l a t e−ac t i on− coe f f : a a : alpha alpha : kk kkcurr : llambda lambda−curr )
91

92 ; ; r e d e f i n e spacet ime to c l e a r i t−o therw i se w i l l throw error each time
93 ( set f ∗ spacet ime ∗ ( make−hash−table : s i z e 8192))
94

95 ; ; i n i t i a l i z e spacet ime
96 ( in i t ia l i ze−t−s l i ces−with−v−volume : num−time−slices ∗T∗ : target−volume (∗ ∗T∗ 1000)
97 : boundary−conditions ’ p e r i o d i c : spat ia l− topo logy ’ S2 )
98

99 ; ; runs monte ca r l o and ou tpu t s spacet ime s i z e to screen
100 ( set f s t ( generate−spacetime−data−console ) )
101

102 ( format t ”∗∗∗ s t = ˜A ∗∗∗˜2%” s t )
103

104 ; ; increments lambda up or down u n t i l spacet ime s i z e s t a y s cons tant
105 ( i f (> s t 0)
106 ( calc−lambda : a a : alpha alpha : kk kkcurr : llambda (+ lambda−curr ∗ lambda−step ∗ ) )
107 ; e l s e
108 ( i f (< s t 0)
109 ( calc−lambda : a a : alpha alpha : kk kkcurr : llambda (− lambda−curr ∗ lambda−step ∗ ) )
110 ( i f (= s t 0) lambda−curr )
111 )
112 )
113 )
114 )
115 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
116 (defun run−lambda (&key ( a 1 . 0 ) ( alpha −1.0) ( start−kk 0 . 0 ) ( end−kk 1 . 5 1 ) ( kkstep 0 . 1 ) )
117 ( let ∗ ( ( d a t a f i l e s t r ( format n i l
118 ”LCRIT a˜ A al ˜A eps˜ A kst ˜A kend˜A on ˜ A sta r t ed ˜A. data2p1”
119 a alpha
120 eps start−kk end−kk
121 ( machine− instance ) ( current−datet ime ) ) ) )
122

123 ; ; l a b e l columns in output f i l e
124 ( with−open− f i le ( d a t a f i l e d a t a f i l e s t r
125 : d i r e c t i o n : output
126 : i f− e x i s t s : supersede )
127 ( format d a t a f i l e ”kk lambda−c˜%” ) )
128

129 ; ; s t e p through k va l u e s and run calc− lambda to f i nd lambda ( k )
130 (do ( ( kk start−kk (+ kk kkstep ) ) ) ((> kk end−kk ) )
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131 ( format t ” eps = ˜A kk = ˜A lambda = ˜A alpha = ˜A a = ˜A˜2%”
132 eps kk llambda alpha a )
133

134 ; ; i f comp−lambda re turns true , wr i t e curren t lambda va lue as lambdac
135 ( set f ∗ lambda−c∗ ( calc−lambda : kk kk : llambda ∗ lambda−c∗ : a lpha alpha : a a ) )
136

137 ; ; p r i n t curren t va l u e s o f kk , lambda−c to f i l e
138 ( with−open− f i le ( d a t a f i l e d a t a f i l e s t r
139 : d i r e c t i o n : output
140 : i f− e x i s t s :append) ; : supersede )
141 ( format d a t a f i l e ”˜A ˜Ã %” kk ∗ lambda−c ∗ ) )
142 )
143

144 )
145 )


