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The persistence of long-range magnetic order in the two-dimensional diluted Hubbard model
is explored using Deterministic Quantum Monte Carlo simulations. For this initial investigation,
lattice sizes up to 16 × 16, inverse temperatures up to β = 16, and dilutions up to f = 0.35 were
studied. Only lattices at half-filling were considered. In searching for a region of dilution where
antiferromagnetism is destroyed, yet is still below the percolation threshold (f ≈ 0.4), candidates
for transitions were found for U = 3 and U = 4 between f = 0.2 and f = 0.3. There appears to be a
possible insulating region for U = 3, but more thorough investigations are needed to be conclusive.

PACS numbers: 71.10.Fd, 71.30.+h, 75.10.Jm, 75.40.Mg

I. INTRODUCTION

The Hubbard model is used to investigate how the in-
teraction between electrons in a lattice produces insulat-
ing, magnetic, and sometimes superconducting effects in
condensed matter. Information derived from this theo-
retical model is most often applied to materials such as
transition metal oxides and high temperature supercon-
ductors. Though it is a relatively simplistic model, it
still displays known interesting effects, such as the Mott
insulating gap that can only be explained by including
electron-electron interactions.

Our investigation is concerned with diluting a square
lattice of antiferromagnetic material, for which the spins
tend to line up such that they alternate up and down.
Dilution of a lattice involves randomly removing a frac-
tion of sites, meaning electrons sit on these sites with
zero (or nearly zero) probability. Once these sites are
removed from the lattice, we run a simulation to observe
the persistence of long-range magnetic order.

In previous studies, our group diluted the lattice by
adding an (essentially) infinite potential to the removed
sites. This makes it energetically costly for an electron
to sit on one of these sites, and it would therefore have a
high probability of tunneling to another site.

For this project, we are using another more efficient
method—cutting out sites from the lattice completely.
Instead of letting the removed sites still exist and ac-
cept electrons, all tunneling paths are removed such that
removed sites are completely isolated and are not consid-

ered in computations, resulting in quicker runtimes.

II. HUBBARD MODEL

The Hubbard model starts with a lattice of atoms, or
sites, for the electrons to occupy. To simplify things,
the atoms are considered to have only one energy level.
Thus, from the Pauli exclusion principle, there can be a
maximum of two electrons per site (i.e. ↑ and ↓).

The Hamiltonian of the standard two-dimensional
Hubbard model includes a kinetic term and a single po-
tential term:

H = −t
∑
〈j,l〉σ

c†jσclσ + U
∑
j

nj↑nj↓

The potential term is derived from the screened Coulomb
interaction between electrons. Since this interaction de-
cays exponentially with distance, the dominant Coulomb
interaction will be between two electrons sitting on the
same site. For the Hubbard model, all other Coulomb in-
teractions are neglected. The kinetic term denotes elec-
trons tunneling, or hopping, from one site to a neighbor-
ing site. A neighboring is any site that is exactly one
unit of distance away; therefore, a site in a square lattice
then has four nearest neighbors. One can also include a
chemical potential term, which controls the filling of the
lattice:

H = −t
∑
〈j,l〉σ

c†jσclσ + U
∑
j

nj↑nj↓ + µ
∑
j

nj↑ − nj↓
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This can then be adjusted such that when µ = 0, the
lattice is always at half-filling, regardless of all other pa-
rameters:

H = −t
∑
〈j,l〉σ

c†jσclσ+U
∑
j

(nj↑− 1
2 )(nj↓− 1

2 )+µ
∑
j

nj↑−nj↓

The preceding is the form of the Hubbard Hamiltonian
used in our simulations, as we only considered lattices at
half-filling.

III. DILUTION

Diluting a lattice removes a fraction of the original
number of sites. The dilution parameter f is simply the
percentage of sites removed, such that a diluted L × L
lattice will have N = L2(1− f) sites. Consider a lattice
of antiferromagnetic matter—the spins tend to alternate
across the lattice in order to minimize energy. The in-
teractions between sites grow weaker as one continually
dilutes the lattice. At some fraction of dilution, the anti-
ferromagnetic properties of the lattice will be destroyed
and the spins will align randomly.

One reason for this destruction of antiferromagnetism
is that the lattice has reached/surpassed the percolation
threshold [1]. At the percolation threshold, the lattice
has been so diluted that there is no longer one large
clump of sites, and the remaining smaller clumps are
all isolated from each other. Clearly, if the lattice is
comprised only of small isolated clumps, there can be
no long-range magnetic order. The percolation threshold
has been studied extensively in percolation theory, and
it is established to be about 40% dilution for a square
lattice [2]. This project is probing the existence of a
range of dilution below the percolation threshold where
antiferromagnetism is still destroyed.

For our results to be physically meaningful, we must
extrapolate to the thermodynamic limit—the limit as the
number of sites N increases towards infinity (or more
practically speaking, NA). However, computer perfor-
mance severely limits the possible sizes of simulated lat-
tices. The largest lattice simulated in this portion of the
project was 16 × 16; clearly, N = 256 � NA. In order
to get an idea of whether the long-range magnetic order
will still exist at these much larger sizes, we need to take

the data we can get within a reasonable timeframe and
extrapolate the trend to the thermodynamic limit. If the
extrapolated curve does not show long-range magnetic
order at this limit, then we can argue that the antiferro-
magnetic order is destroyed at the current dilution.

IV. SIMULATION

For the purposes of this paper, I will be very brief
regarding the code used for this project, as I did not have
a chance to learn about it in greater detail. As previously
mentioned, the code was originally written for the onsite
infinite potential dilution method. After deciding to try
the new dilution technique, the front end of the code was
readjusted so that I could run the simulations.

The code uses Deterministic Quantum Monte Carlo
and, in addition to the two spatial dimensions of the
lattice, includes an imaginary time dimension. Over an
imaginary time iteration, the electrons are given random
suggestions to realign their spins, which are accepted
with some probability controlled by the DQMC algo-
rithm. In order to help counteract finite size and edge
effects, periodic boundary conditions are employed.

From the massive amount of data output, only a few
values related to magnetization—the magnetic structure
factor and the spin-spin correlation—were analyzed. The
spin-spin correlation between the two farthest points on
the square lattice (i.e., a corner and the center due to
periodic boundary conditions)

CL
2 ,

L
2

= 〈σz0σzx= L
2 ,y=

L
2
〉

gives the square of the magnetization. The magnetic
structure factor

S(q) =
1
N

∑
i,j

eiq·(Ri−Rj)〈(ni↑ − ni↓)(nj↑ − nj↓)〉

is the fourier transform of the correlation function and
has a peak at q = (π, π). S(π, π) divided by the lattice
size is roughly the magnetization squared as well, differ-
ing only by a negligible additive constant. [3]

Using the S(π, π) and C(L2 ,
L
2 ) values taken from the

simulation of our relatively small lattices, we can extrap-
olate the magnetization at the thermodynamic limit. As
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stated earlier, if the magnetization is no longer present
at the thermodynamic limit, we can argue antiferromag-
netism has been destroyed at that dilution value.

V. DATA AND ANALYSIS

Running the simulation at colder temperatures in-
creases the number of imaginary time iterations (by a
factor of eight with our setup), and thus significantly
extends the runtime of the simulation. Therefore, we
needed to first plot S(π, π) against inverse temperature
β to check the lattices were at cold enough temperatures
that S(π, π) had leveled off, while not spending unnec-
essary time at even colder temperatures. For example,
in our initial studies with U = 4, there was a significant
enough increase in S(π, π) for the larger lattice sizes from
β = 8 to β = 12 that we needed to look at a colder tem-
perature, β = 16 (See Fig. 1).

After extracting the saturated values of S(π, π) and
C(L2 ,

L
2 ), S(π, π) per site and C(L2 ,

L
2 ) were plotted

against 1√
N

, or 1
L . From this plot, the trends can be

extrapolated to intercepts at 1
L = 0. A positive intercept

indicates there is still antiferromagnetic order, otherwise
the long-range magnetic order has been destroyed at that
dilution.

A first look at data collected on U = 4 indicated the

0 1 2 3 4 5 6 7 8 9 10 11 12 13
!

0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 14

S(
",
")

N = 6x6
N = 8x8
N = 10x10
N = 12x12

FIG. 1: U = 4, f = 0.1. Initial runs indicated that β = 12
was not cold enough for S(π, π) to saturate at larger N . After
determining β = 20 required too much time, and did not
indicate a significant enough change in S(π, π), β = 16 was
deemed sufficient for this initial investigation.

possible destruction of antiferromagnetism below f =
0.3, but there were concerns that S/N was not linear
in the lattice size range we were considering. If this were
correct, all the intercepts would be shifted up by some
factor. Comparing initial results for U = 3, 4, 5, we saw
that U = 3 showed more promise of having an insulating
range before the percolation limit, as the intercepts were
lower than those of either U = 4 and U = 5 (See Fig. 2).
Thereafter, the bulk of my work was focused on refining
my results for U = 3, which will be the focus for the
remainder of this paper.

To corroborate our S/N intercept values, the linear
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(a)U = 4, fcrit possibly between f = 0.25 and f = 0.3.
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(b)U = 3, fcrit possibly between f = 0.2 and f = 0.25.

FIG. 2: Linear extrapolations indicate possible destruction
of long-range magnetic order. Similar plots were made for
C( L
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2
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FIG. 3: U = 3. Intercepts for S/N and C.

fits for S/N were compared to linear fits of the spin-spin
correlation C(L2 ,

L
2 ). Both should give the same value

at the thermodynamic limit, therefore they should have
the same extrapolated intercepts. However, there is a
consistent disagreement in the intercepts (Fig. 3).

Our current conjecture is that the curves for S/N are in
fact nonlinear in this range of lattice sizes, and that the
extrapolated curves could actually approach intercepts
that agree more with the C linear fits. In Fig. 4, one can
see this situation is quite possible.

VI. RESULTS AND FUTURE WORK

So far, we have not been able to confirm nor rule out
the existence of a range of dilution below percolation
where antiferromagnetism is destroyed. The next step
will probably be do the same batch of parameters with
more iterations, and see if this smooths out the S/N and
C curves significantly. Since the spin-spin correlation is
more linear in this range, we could use C as a gauge
for long-range magnetic order if it is confirmed that the
S/N and C curves are in fact extrapolating to the same

intercept.

Going to larger lattice sizes will help pinpoint those ex-
trapolated intercepts, but also requires a great amount of
processor time, as larger lattice sizes require colder tem-
peratures as well. As such, we want to be sure we have
accurate data at the smaller lattice sizes before moving
on to more computational expensive runs.
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FIG. 4: U = 3. Data for S/N and linear fit for C. It is pos-
sible S/N is nonlinear in this range and actually approaches
the same intercept.
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