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Abstract

This paper presents a Glauber Monte Carlo study of collisions between
gold nuclei at

√
s = 9GeV. RHIC and STAR are briefly introduced. I

then discuss the Glauber model, and the Monte Carlo and continuous
approaches to implementing it. I discuss how I used the Glauber Model
to fit a simulated RefMult curve to an empirical one, and present centrality
cuts on experimental RefMult, impact parameter, number of participants,
and number of collisions.

1 Introduction

The RHIC (Relativistic Heavy Ion Collider) at Brookhaven National Labora-
tory is a particle accelerator devoted to high-energy nuclear physics. There are
two active detectors at RHIC, PHENIX (Pioneering High Energy Nuclear In-
teraction Experiment) and STAR (Solenoidal Tracker at RHIC). This study is
based on data taken at STAR. Unlike other accelerators such as the LHC and
Tevatron, RHIC’s primary mode of operation is colliding heavy nuclei. Heavy
nuclear collisions are of interest because they create a region of high energy
density that contains many hadrons, allowing researchers to study the bulk
properties of hadronic matter under extreme conditions. The primary subject
of interest at RHIC is a state of matter called the Quark-Gluon plasma (QGP).
In a QGP, hadrons break up into individual quarks and gluons. QGP is anal-
ogous to atomic plasma in that it is full of free color charges but is globally
color-neutral (as is required by the principle of color confinement). In a QGP,
interactions between quarks and gluons are weaker and simpler than in normal
hadronic matter, so this state is a good environment for the study of the proper-
ties of individual quarks and gluons. In addition, it is believed that the universe
was in the QGP state during the first few microseconds after the Big Bang, so
studies of QGP could have applications for cosmology [1] (94).

Because QGP, as well as most of the particles produced during a heavy-ion
collision, are so short-lived, it is necessary to study them indirectly by analyz-
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ing the particles they emit as they evolve and decay. A major task for nuclear
physicists is to create models that infer properties of the process of interest from
the characteristics of particles observed by STAR’s detectors. There are sev-
eral important characteristics of every heavy-ion collision that are not directly
observable. One number of interest is the impact parameter, or the distance
between the centers of two colliding nuclei at closest approach. An impact pa-
rameter of zero corresponds to a head-on collision, and higher impact parameters
correspond to more peripheral collisions. It is also desired to know the number
of protons and neutrons (collectively, nucleons) in each nucleus that actually
collide with one another during a certain nuclear collision. (Not all the nucle-
ons in each nucleus interact during a typical heavy-ion collision. The ones that
do are referred to as participants and the others are referred to as spectators).
Another important parameter is the number of nucleon-nucleon collisions. This
is not just half the number of participants because it is possible, and indeed
common, for a participant in one nucleus to collide with several participants in
the other nucleus [2] (118).

This paper is concerned with the relationship between those three param-
eters and the number of charged hadrons detected by STAR (called Reference
Multiplicity or RefMult) during collisions between gold nuclei at center of mass
energy of 9GeV. This study also divides impact parameter, number of partic-
ipants, number of collisions, and RefMult into centrality bins, which give the
range of each parameter that result from a certain, most central, percentage of
nuclear collision events.

2 The Glauber Model

The backbone of this study is the Glauber model. This model is commonly
used to simulate heavy-ion collisions. It uses either numerical or Monte Carlo
integration to determine the number of participants and number of collisions for
two nuclei of a certain type colliding with a certain energy at a certain impact
parameter.

The Glauber Model assumes that the particle density of nucleons in a nucleus
follow the Woods-Saxon density profile. This has the form:

ρ(r) =
ρ0

1 + e
r−a

d

(1)

where ρ(r) is the nucleon density, r is the distance from the center of the
nucleus, a gives the approximate radius of the nucleus, and d is a measure of
the skin depth, or how quickly the nuclear density falls off near the edge of the
nucleus. ρ0 is fixed by the normalization condition:∫

ρdV =
∫ ∞

0

4πr2ρ(r)dr = A (2)

Values used for these parameters were: a = 6.5 fm, d = 0.535 fm, ρ0 =
0.16 fm−3. [2] (113).
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The Glauber Model also assumes that nucleons collide inelastically, and have
some probability of producing observable particles on each collision. However,
energy loss and change in momentum from each interaction are negligable, and
so each nucleon can interact multiple times with the same cross-section. This
static cross-section is assumed to be the same as the inelastic cross section
for a single proton-proton collision; that is, the probability of two protons in
different nuclei to collide does not depend on the nuclear environment. Finally,
the Glauber model ignores the electromagnetic cross-section of proton-proton
collisions and treats protons and neutrons as interchangable.

There are two general ways of implementing the Glauber model. The first
is to picture each nucleus as a continuous density distribution. Because nuclei
are assumed to pass straight through each other, the two nuclei only “see” one
another’s transverse density distribution. This is referred to as the thickness
function, and it is obtained by collapsing the three-dimensional density distri-
bution onto the transverse plane:

T (x, y) =
∫

ρ(x, y, z)dz (3)

Here, z is the longitudnal direction and (x, y) make up the transverse plane,
by convention [2] (118).

A collision of two nuclei at impact parameter b is modeled by the separation
of two thickness functions by b in a transverse direction (taken to be the x
direction, arbitrarily). The number of participating nucleons (Npart) and the
number of nucleon-nucleon collisions (Ncoll) are given by:

Npart =
∫∫ (

T (x, y)(1 − e−σppT (x−b,y)) + T (x− b, y)(1 − e−σppT (x,y))
)
dxdy

(4)

Ncoll = σpp

∫∫
T (x, y)T (x− b, y)dxdy (5)

where σpp is the inelastic cross-section for proton-proton collisions [2] (122-
125). Its value is taken to be 31.5mb [5].

An alternate way to implement the Glauber model is to picture a nucleus
as a bundle of A discrete nucleons. In this method, two nuclei are randomly
populated with A nucleons each, fitting a Woods-Saxon density distribution. If
X1, X2, and X3 are three different random variables uniformly distributed on
[0, 1], then the nucleon location in spherical coordinates (r, θ, φ) is found using:

AX1 =
∫ r

0

4πŕ2ρ(ŕ)dŕ (6)

θ = arccos(1− 2X2) (7)

φ = 2πX3 (8)

These were obtained from D. Cebra during a consultation on this project.
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One nucleus is translated by b in a transverse direction (again, x is used).
The set of transverse distances ri,j between every pair of nucleons from different
nuclei is found, and a pair is assumed to have collided if the distance between
them is less than the “nucleon radius” corresponding to the inelastic cross-
section:

ri,j =
√

(xi − xj)2 + (yi − yj)2 ≤
√

σpp

π
(9)

Npart and Ncoll are then simply counted. Ncoll is the number of nucleon-
nucleon collisions, and Npart is the number of nucleons that undergo at least one
collision. Because of the use of random numbers to do a numerical integration
problem, this approach is classified as a Monte Carlo method.

The results of both methods are graphed below:
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Figure 1: Npart(b).
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Figure 2: Ncoll(b).
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Both techniques are numerical, so they are subject to errors. To find Npart

and Ncoll in the continuous picture, a two-dimensional Riemann sum was used.
Upper and lower bounds for the correct value of the integral are given by the
upper and lower Riemann sums. An approximate expected value is given by the
average of the two, and the maximum error is given by the difference between
the upper or lower and the average. In the discrete picture, it is assumed that
a trial collision at a certain impact parameter will give results for Npart and
Ncoll that are normally distributed. Averaging over some number of results
at the same impact parameter will give an unbiased estimator of the correct
values for Npart and Ncoll. Again, assuming normal distribution, the estimate
of the error is given by E ∼ σ/

√
N , where E is the error estimate, σ is the

empirical standard deviation, and N is the number of trials. To summarize,
the Riemann integral is made more accurate by shrinking the discrete intervals
that are summed over, and the Monte Carlo method is made more accurate by
increasing the number of trials averaged over. Interestingly, getting a certain
precision took about the same amount of computer time for both methods.

3 Simulated RefMult distribution

To build a simulated RefMult distribution, I first simulated a typical run at
STAR. To do this, I ran 106 Monte Carlo throws at random b with values on
[0, 20] fm. The events were not averaged over; each event contributed to the
RefMult distribution directly. Because of this, it was advantageous to use the
Monte Carlo algorithm alone. The b values were weighted radially, because
the fractional cross-section of a certain b goes as bdb [3]. I am confident that
the [0, 20]fm interval covered all but a negligable fraction of the cross section
because there were no nucleon-nucleon collisions with b > 19 fm. All throws
that resulted in no collisions were thrown out; this left about 6∗105 live events.

I asume here that the RefMult produced by an event had a probability
described by a Negative Binomial Distribution. This is a standard assumption in
RefMult studies, for examples see [4] and [6]. A Negative Binomial Distribution
has the form:

f(n; k, µ) =
(

n + k − 1
n

)
(µ/k)n

(µ/k + 1)n+k+1
(10)

Where µ is the mean, and k is a second parameter affecting the width.
Sometimes an alternate parameterization is used:

f(n; k, p) =
(

n + k − 1
n

)
pr(1− p)n (11)

The relation between the two is: p = 1
µ/k+1 , or µ = k 1−p

p [7].
Those two parameters µ and k are related to Npart and Ncoll. According to

[6] (122), the relation is:
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µ = α((1− x)
Npart

2
+ xNcoll) (12)

k = β((1− x)
Npart

2
+ xNcoll) (13)

In these equations, α is the expected RefMult for a single proton-proton
collision, and β is another fit parameter. The parameter x is not used in all
parameterizations, but it is used in this one to determine what types of processes
contribute to RefMult. It is assumed processes that contribute to RefMult can
be divided into two parts. The first is the “soft” part, proportional to Npart.
“Soft” processes are so called because they involve collisions at energies that are
so low that the energy lost by the participants in particle production is enough
to prevent them from colliding inelastically a second time and producing more
particles. This is why it the soft part of RefMult is assumed to depend only on
Npart. The second is that “hard” part, proportional to Ncoll. “Hard” processes
are those that involve collisions that are so energetic that each participant can
collide several times with no significant stopping from energy loss to particle
production. This is why the hard part is assumed to depend only on Ncoll. The
fraction x indicates the relative contributions of hard and soft processes to the
total RefMult [6] (122).

The fit parameters α, β, and x were fit using a least-squares optimization.
It was assumed that x ≤ 0.1, since x increases with center-of-mass energy, and
x is found to be ∼ 0.1 for 130GeV in at least one study [6] (123). Unfortunately,
when I ran a least-squares distribution, I got this:
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Figure 3: x = 0.1, α = 1.25, β = 1.7. Fit is very poor.

I believe that this graph has that form because a least-squares distribution
is biased toward fitting high values (which will have high absolute errors). It is
unclear how to fix this without introducing new biases.
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Next, I tried setting x = 0, and fitting α = 1.1 and β = 1.3 by eye. This
resulted in this graph:
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Figure 4: Second try at fitting RefMult

The above parameters resulted in these centrality cuts:
Centrality Experimental RefMult Calculated RefMult b (fm) Npart Ncoll

0.1 265 195 5 325 680
0.2 165 155 7 265 530
0.3 125 130 8.5 220 410
0.4 95 105 9.5 180 320
0.5 75 90 10.5 150 245
0.6 50 70 11.5 120 180
0.7 35 60 12.5 95 135
0.8 25 45 13.5 75 95
0.9 15 35 14.5 60 65
1.0 10 30 19 45 45

4 Conclusions and Future Work

The first part of this project, implementing the Glauber Monte Carlo method,
works very well. However, the second part, using the Glauber data to fit Ref-
Mult, has not suceeded. Fitting by eye works reasonably well, but I have not
found a good, systematic way to get a fit.Once that is done, accurate centrality
cuts can be created. Also, a good fit can be used to give an estimate of the trig-
ger inefficiency of a a particular RefMult data set, by taking the ratio between
the predicted and empirical distributions at low RefMult.
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