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Abstract

The theory of causal dynamical triangulation in (2+1) dimensions
is studied through the help of Monte Carlo simulations. The basic ideas
behind this particular approach to quantum gravity are outlined in the
paper. The numerical setup and the results from the simulations are
presented and discussed. Based on the numerical results, the theory is
shown to possess a non-trivial classical limit. The effective dimension of
the emergent quantum universe is examined by means of measurements
of the fractal spectral dimension.

1 Introduction

Formulating a consistent quantum theory of gravity lies at the root of our
understanding of nature and still remains as one of the greatest challenges in
theoretical physics today. In recent years, a particular discrete approach to
quantum gravity called the causal dynamical triangulation or CDT in short,
invented by Loll, Ambjorn, and Jurkiewicz, has received considerable atten-
tion. The CDT approach defines quantum gravity through nonperturbative
state sums of causally triangulated geometries, and is particularly expedient
for numerical implementations. Numerical simulations in both 3 and 4 dimen-
sions have yielded promising results indicating a non-trivial micro-structure of
spacetime geometry governed by quantum laws and a semi-classical behavior
of the theory in the large-scale limits [1, 2, 3]. We have developed a computer
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program to simulate the model in 3 dimensions, in hope of confirming some of
the results obtained by Loll etc. as well as discovering other new interesting
insights for quantum gravity in 3 dimensions. In this paper, we will briefly
describe this novel approach to quantizing gravity and discuss some of the
results we obtained in our computer simulations.

2 Quantum Gravity

Gravity in classical general relativity [4] is described by a symmetric tensor
field gµν(x) with a Lorentzian signature called the metric which determines lo-
cally the values of distances and angle measurements in spacetime. The theory
is intrinsically geometric in the sense that the spacetime is represented by a
smooth manifold M with measurable quantities (the metric, particle velocity,
electromagnetic field, etc.) being tensor fields defined on the manifold. This
property of general relativity is referred to as general covariance or diffeomor-
phic invariance. The metric tensor gµν(x) satisfies the Einstein’s equations
with the energy and matter distribution in the spacetime serving as the source
term in these equations.

Quantum mechanics on the other hand describes the state of a physical
system mathematically as a vector in a Hilbert space (or a product of a set
of Hilbert spaces in the case of quantum field theory). In Feynman’s path
integral formulation of quantum mechanics [5], the quantum amplitude (inner
product of two state vectors) of a process is given by a sum over all histories,
or all possible configurations that connects the two states, each of which is
weighted by e−iS, where S is the action of that history. Ordinary quantum field
theory describes the dynamics of elementary particles and their interactions
on a fixed spacetime background, usually that of the flat Minkowski space of
special relativity.

Both theories work extraordinarily well at the scales for which they are
valid. However, the task of unifying the two theories under one theoretical
framework is a notoriously difficult one. The difficulties of finding a consistent
theory of quantum gravity are on the one hand due to the lack of experimental
tests and further complicated by the fact that the two theories make drastically
different assumptions on how nature works. General relativity is a nonlinear
theory and is thus intrinsically more complicated than linear field theories such
as electrodynamics. Moreover, the theory is nonrenormalizable so applying the
usual perturbative quantum field theoretic methods fails to produce a sensible
theory of quantum gravity. General relativity is a theory of that describes
the dynamics of the geometry of spacetime, which at the same time, serves
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as a playground for other matter fields. Therefore, quantizing gravity means
quantizing spacetime itself.

3 Causal Dynamical Triangulation

In this section, we attempt to give a rough summary of the theory of CDT.
For a more thorough introduction, the read is referred to [6].

The approach of CDT follows a minimalist spirit in the sense that it is
based on a minimal set of well-known physical principles and tools such as
quantum superposition, triangulation of geometry, and etc. The theory is both
background independent and nonperturbative, by which we mean that the
theory does not simply describe the dynamics of gravity as linear perturbation
around some preferred background metric.

To simplify the problem, we will from now on assume that we can break
up the spatial and temporal parts of our spacetime, i.e., the spacetime under
consideration has the topology [0, 1]×Σ, where Σ represents a compact spatial
hypersurface. In other words, we can choose a global time function t such that
each surface of constant t is a spatial Cauchy surface.

Gravitational Path Integral

In CDT, quantization is carried out through the path integral:

G(g0,g1; t0, t1) =

∫
Dg eiSEH[g] , (1)

where

SEH[g] =
1

16πG

∫
dnx
√
−g(R− 2Λ) (2)

is the usual Einstein-Hilbert action for gravitation, the variational equations of
which are the Einstein’s equations. Here g denotes the spacetime metric that
interpolates between the two spatial metrics g0 and g1. General relativity is
taken to be an ordinary field theory with the metric gµν representing its field
degrees of freedom which are to be integrated over in the path integral to
produce a quantum theory.

Let us discuss briefly what it means by a gravitational path integral and
address some related issues. Analogous to the usual interpretation of the path
integral, the propagator G here is given by a superposition of all virtual space-
times, each of which is weighted by the classical action. In contrast to the usual
path integral formulation of quantum mechanics and quantum field theory, the
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gravitational path integral is more intricate due to the diffeomorphism invari-
ance of the theory and due to the absence of a preferred background metric.
Due to the diffeomorphism invariance, the path integral (1) should be taken
over the space of all geometries rather than the space of all metrics because
any two metrics are equivalent if they can be mapped onto each other by a
coordinate transformation, in other words, the functional measure Dg must be
defined in a covariant way. Because there is no obvious way to parametrize ge-
ometries, one may suggest that we introduce covariant metric tensor as a field
variable to evaluate the integral. However, this leads to the complication that
gauge fixing the metric tensor using techniques such as the Faddeev-Popov
determinants requires exceedingly difficult nonperturbative evaluation.

The path integral as it stands is not mathematically well-defined. In or-
dinary quantum field theory, to actually evaluate the integral one usually
performs a Wick rotation by analytically continuing the time variable t to
the imaginary axis, i.e., t 7→ it. The Wick rotation converts a problem in
Lorentzian spacetime MLor to one in Euclidean space MEuc. It is not obvious
how the Wick rotation needs to be carried out in the gravitational setting.
The ad hoc substitution iSLor → −SEuc that is used widely in field theories is
in fact the basis for the predecessor of CDT, the Euclidean dynamical trian-
gulation [7]. As will be discussed shortly, CDT is based on a different program
for carrying out the Wick rotation, one that specifically preserves the causality
of spacetime, setting it apart from the old Euclidean approach.

Regge Calculus

To perform the calculation nonperturbatively, we use a lattice method similar
to those used in lattice gauge theories. In the field theoretic context, the lattice
spacing a will naturally serve as a cutoff of the theory. The continuum limit is
extracted by taking the lattice spacing a to zero and hoping that the resulting
theory is independent of the cutoff. This suggests that we need some specific
scheme for discretization of spacetime geometries. The idea of approximating
a spacetime manifold by a piecewise flat spacetime was first developed by
Regge [8] and is called the Regge calculus which has been successfully applied
in numerical general relativity and quantum gravity before CDT [9].

Instead of considering spaces with smooth curvature, Regge looked at
spaces where the curvature is restricted to subspaces of codimension two, based
on the division of the manifold into elementary building blocks which are usu-
ally taken to be simplices, i.e., higher dimensional analogs of triangles, with
consistent edge length assignments li. For example, a simplex in two dimen-
sions is a flat triangle and in three dimensions a tetrahedron, and so on. A
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simplicial manifold or equivalently a triangulation of a smooth manifold is ob-
tained by gluing together these simplicial building blocks in an appropriate
manner. The Einstein-Hilbert action can then be written as a functional of
the edge lengths only, by making the following substitutions [10]:∫

dnx
√
−gR → 2

∑
j∈T

εj , (3)

∫
dnx
√
−g →

∑
j∈T

Vj , (4)

where j is an index labeling the hinges, i.e., the elements of codimension two
(points in 2D, edges in 3D, triangular faces in 4D, and etc.) where curvature
resides in a particular triangulation T . εj is the so-called deficit angle and
Vj the dual volume of the hinge j. In terms of these geometric variables, the
action (2) is written as

SRegge({l2i }) =
∑
j∈T

(k εj − Vj λ) , (5)

where k ≡ 1/8πG is the inverse Newton’s constant and λ ≡ kΛ/2 is the
redefined cosmological constant.

Dynamical Triangulation

Since in Regge calculus each triangulation T is completely characterized by
the set of all squared edge lengths {l2i }, we can in principle carry out the
path integral by integrating over all possible edge lengths, i.e.,

∫
Dg →

∫
Dl,

with each configuration {l2i } weighted by the corresponding Regge action (5).
However, a problem with this approach is that certain triangulations may be
over counted due to the gauge freedom in the edge lengths since each edge
length is varied continuously. Moreover, one would still like to introduce a
suitable cut-off scale for the edge length. Instead, a more restricted version of
Regge calculus called dynamical triangulation is employed in CDT.

In dynamical triangulation, one again uses simplicial manifolds and the
Regge form of the action, but a different space of triangulated geometries in
the path integral. Instead of integrating over all possible edge lengths for a
fixed simplicial manifold, one fixed the lengths of the basic simplicial building
blocks, and sums over all distinct triangulations of M . It is to be noted that
fixing the edge lengths is not a restriction on the metric degrees of freedom
since one can still achieve all kinds of deficit angles by appropriate gluing of the

5



t

x

t1

t0

(3,1) (2,2) (1,3)

Figure 1: The three types of basic building blocks in three dimensions.

simplicial building blocks. The continuum path integral can thus be written
as a discrete sum over inequivalent dynamical triangulations:∫

Dg eiSEH[g] →
∑
T∈T

1

C(T )
eiSRegge(T ) , (6)

where 1/C(T ) is the measure on the space of triangulations, with C(T ) being
the order of the automorphism group of the triangulation T . From a numerical
point of view, this is extremely convenient since information about the geom-
etry is reduced to combinatorics, in other words, geometric quantities such
as volume and curvature can be obtained by simple counting of the simplicial
elements (points, edges, faces, etc.). In addition, an approximation of the path
integral can be obtained numerically by sampling the configuration space of
all dynamical triangulations (discrete metrics) T . This is exactly what we do
in our computer simulations which will be described in detail in section 4.

Role of Causality

Now we are left with the question of how to perform a Wick rotation and ex-
plicitly compute the sum in (6). In the old Euclidean dynamical triangulation
approach, one makes the substitution iSLor → −SEuc and sum over the Eu-
clidean counterparts of the dynamically triangulated Lorentzian geometries,
i.e., discrete geometries made up of Euclidean simplicial building blocks. The
problem with the Euclidean approach is that the Euclidean geometries that
constitute the path integral know nothing about causality, namely the light-
cone structure of the spacetime and there is no a priori prescription of how to
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Figure 2: A local subset of a causal dynamical triangulation in three dimensions.
Note that each building block tetrahedron has the inherent light-cone structure of
a Minkowski space

perform an inverse Wick rotation to recover causality in the full quantum the-
ory. Furthermore, due to the absence of time a large class of highly degenerate
geometries contributes to the path integral, causing a well-defined continuum
theory fails to exist.

On the contrary, in CDT the causal structure is built into the discrete
geometries from the outset. The geometries that are summed over are taken
to be the same homeomorphism class, i.e., we do not allow different spacetime
topologies to contribute to the path integral. As mentioned before, we will only
consider globally hyperbolic simplicial manifolds with a time-foliated structure,
where the (n − 1)-dimensional spatial slices (each labeled by the global time
t, not a gauge choice) have a fixed topology (usually taken to be Sn−1). In
other words, topology changes of the spatial slices are not allowed because
spatial topology changes are often associated with causality violation. Each
simplicial building block in CDT is taken to be a subset of the Minkowski
space together with its inherent light-cone structure. Again, a triangulated
geometry along with its global causal structure is obtained by suitable gluing
of these simplicial building blocks, each of which has its own local causality,
whose spacelike edges all have the same length squared a2 and whose timelike
edges all have the same length squared −αa2, where α denotes an asymmetry
factor between the spacelike and timelike geodesic distances. This leaves us
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with n types of simplicial building blocks in n dimensions. The three types
of building blocks in 3 dimensions are shown in Figure 1. An example of how
they are glued together to form a local subset of a 3-dimensional simplicial
spacetime is shown in Figure 2.

Wick Rotation and the Euclidean Action

In CDT, Wick rotation is defined by analytical continuation of all timelike
edges of each simplicial building block respectively to the Euclidean sector, i.e.,
by making the substitution −αa2 → αa2 for the length square of the timelike
edges. This takes a discrete Lorentzian geometry TLor to its corresponding
Euclidean geometry TEuc. As a result, the Lorentzian action is replaced by the
corresponding Euclidean action1, i.e.,

iSLor ≡ iSRegge(TLor) → −SEuc ≡ iSRegge(TEuc) (7)

The Wick rotation in effect converts a path integral (a quantum mechan-
ical problem) to a partition function (a statistical mechanical problem). The
configuration space of dynamically triangulated spacetimes T after the Wick
rotation can be viewed as a statistical ensemble with the partition function

Z =
∑
T∈T

e−SE(T ) , (8)

where SE(T ) is the Euclidean Regge action of the triangulation T . Here we
have taken the measure factor 1/C(T ) to be 1 simply because that based on
the general observation in the theory of critical phenomena we do not expect
the detailed choice of the measure to affect the continuum limit of the theory.
This assumption is further supported by the analytical solution to the CDT
model in two dimensions [12]. After rewriting the problem in the language
of statistical mechanics, we can readily employ the Monte Carlo method to
tackle the problem with computer simulations.

4 Numerical Implementation in 3D

In this section and the rest of the paper, we will only consider the CDT model
in three dimensions. Gravity in three dimensions often provides a simpler
setting for quantization [13]. For instance, classical 3D gravity is devoid of
propagating degrees of freedom. The lower-dimensional theory can serve as
an interesting toy model for the study of quantum gravity. In this section, we
describe the numerical setup of our simulation.

1The derivation of this can be found in [11]
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Partition Function

It can be shown that in three dimensions and for the special case α = −1 (sym-
metric timelike and spacelike discrete geodesic lengths) the discrete Euclidean
action is expressible in terms of the total number of vertices and tetrahedra,
N0 and N3, in the triangulation T , and takes the form [1]

SE(T ) = −k0N0 + k3N3 , (9)

where

k0 =
a

4G

k3 =
a3Λ

48
√

2πG
+

a

4G

(
3

π
arccos

1

3
− 1

)
.

(10)

The dimensionless coupling constants k0 and k3 will simply be referred to
as the inverse Newton’s constant and the cosmological constant, respectively.
The partition function (8) can thus be written as

Z(k0, k3) =
∑
T∈T

ek0N0−k3N3 . (11)

One can show that, for finite volume, the model described above is well-defined
in the sense of being a statistical system whose transfer matrix is bounded and
positive [11].

Data Structure

The particular time-foliated structure of the simplicial manifolds under consid-
eration allows a discretization of the global proper time t. In our simulations,
the total number of time intervals is taken to be 8, 16, 32, and 80. For exam-
ple, in a triangulation with 16 time intervals, each spatial slice is labeled by an
integral number between 0 and 16. On the other hand, since each 3-simplex
(tetrahedron) sits between two spatial slices, it is labeled with a half-integer.

As already mentioned in the previous section, there are only three types of
basic building blocks in three dimensions (Figure 1). We denote each of these
building blocks by the number of points it has in the adjacent spatial slices.
For instance, the (1,3) simplex has 1 vertex point at t and 3 vertex points at
t + 1, and so on. The number of (1,3) simplices in the time interval [t, t + 1]
will be denoted by N13(t), and likewise for the (2,2) and (3,1) simplices. The
following list summarizes the notation we will adopt throughout the remaining
paper.
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N0 - number of 0-simplices (points)
N1 - number of 1-simplices (edges)
N2 - number of 2-simplices (triangles)
N3 - number of 3-simplices (tetrahedra)
N13 - number of (1,3) simplices
N22 - number of (2,2) simplices
N31 - number of (3,1) simplices

Since each triangulated spacetime consists of a set of tetrahedra glued to
each other in a specific manner, the data structure we need to deal with in
our computer program is not particularly complicated. We use a hash table
to store the current configuration during the simulation. Each point in the
configuration is labeled by a natural number. In addition, every tetrahedron
is assigned an id number which points to a particular entry in the hash table.
Each entry in the hash table is a list of numbers that represents the properties
of the corresponding tetrahedron. Each list has the structure

(y, t, p1, p2, p3, p4, n1, n2, n3, n4) , (12)

where y represents the type of the tetrahedron and takes the values 1, 2 or
3 for (1,3), (2,2), or (3,1) simplices, respectively, t is the time at which the
tetrahedron resides and assumes half-integer values, the numbers p1 through p4

are the labels of the four vertex points, and n1 through n4 are the id numbers
of the four neighboring tetrahedra that are glued to this tetrahedron (sharing
exactly three points). We order the vertex points in the way such that points
at the earlier time are placed before the points at the latter time. In addition,
the neighboring tetrahedron ni is glued to the face that does not contain the
point pi. For example, the list (3, 1

2
, 1, 2, 3, 4, 10, 11, 12, 13) represents a (3,1)

simplex at t = 1/2 having the vertex points 1, 2, 3, and 4 and are connected
to the tetrahedra with id numbers 10, 11, 12, and 13. It can also be inferred
from the list that the points 1, 2, and 3 are anchored at t = 0 while the point
4 at t = 1 as well as the fact that the neighboring tetrahedron 10 shares the
triangle 234, and so on.

Monte Carlo Moves

Starting from any initial configuration, the Monte Carlo method generates
random configurations by a random walk through the configuration space (in
our case, T ). Using the technique of detailed balance, we will be able to
calculate the expectation value of any observable. Each step in the random
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walk is usually referred to as a Monte Carlo move. The computer simulation
randomly generates successive Monte Carlo moves and modifies the hash table
according to the rules associated with each of the moves.

In three dimensions, there are five basic moves that locally update the tri-
angulation (counting inverse moves as separate). This set of moves is believed
to ergodic, that is, any configuration in the ensemble of triangulations can
be reached from any other configuration by successive applications of moves
from this set. Furthermore, these moves preserve the time-foliation structure
as well as the spacetime topology. Note that all of the moves will be rejected
if they violate the simplicial manifold property.

2

5

1

4

3

2

5

1

4

3

6

Figure 3: The (2,6) move.
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Figure 4: The (4,4) move.

The moves are denoted by a set of two numbers that describe how they
locally affect the number of 3-simplices. For example, the (m,n) move is one
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Figure 5: The (2,3) move.

that operates on a local subset ofm tetrahedra and replaces it by one consisting
of n tetrahedra. These moves are illustrated in Figure 3, 4, and 5 where we have
also shown the labels of the vertices of the initial and resulting simplices. For
instance, the (2,3) move acts on a subset that consists of a (3,1) simplex and a
(2,2) simplex sharing one triangular face and turn it into a subset consisting of
a (3,1) simplex together with the two other (2,2) simplices. The corresponding
inverse move, the (3,2) move, does the exact opposite. Note that the time-
reversed version of the above move is also valid. To illustrate explicitly how the
moves change the hash table where the information about the triangulation is
stored, we show how the lists of a local subset of tetrahedra (with id numbers
1 and 2) are modified by the (2,3) move for the case illustrated in Figure 5:

1 : (3,
1

2
, 1, 3, 5, 4, 2, 0, 0, 0)

2 : (2,
1

2
, 3, 5, 4, 2, 0, 0, 0, 1)

⇓

3 : (3,
1

2
, 1, 3, 5, 2, 0, 5, 2, 0)

4 : (2,
1

2
, 1, 3, 4, 2, 0, 5, 3, 0)

5 : (2,
1

2
, 1, 5, 2, 4, 0, 4, 0, 3)

(13)

Here 0 simply indicates that the tetrahedron is not connected to any other at
that face. A more detailed description of these moves can be found in [11].

Metropolis Algorithm

In order to get sensible, accurate results when simulating statistical systems
with a rapidly varying Boltzmann weight (e−SE in our case), it is vital to use the
idea of importance sampling in Monte Carlo integration. The ideal situation is
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to sample configurations with a probability given by their Boltzmann weight.
Then the Monte Carlo average of N measurements of an observable A would
just be

〈A〉 ≡
∑

T∈T A(T )e−SE(T )

Z
≈ 1

N

N∑
i

A(Ci) , (14)

where Ci is the so-called Markov chain of configurations sampled during the
simulation. To set up the Markov chain we need to introduce a fictitious
dynamics by adjusting the probability of making a transition from one config-
uration to another based on the change in the Boltzmann weight.

Let P (Ci) be the probability of being in configuration Ci and W (Ci, Ci+1)
be the transition probability of going from Ci to Ci+1. The so-called detailed
balance condition assures that the random walk reaches an equilibrium prob-
ability distribution and is expressed as

W (Ci, Ci+1)P (Ci) = W (Ci+1, Ci)P (Ci+1) . (15)

In terms of the current problem of the statistics of triangulated geometries,
the condition is written as

W (T1, T2)

W (T2, T1)
=
P (T2)

P (T1)
=
e−SE(T2)

e−SE(T1)
= e−∆SE . (16)

The simplest choice of W that satisfies the detailed balance condition is given
by

W (T1, T2) =

{
e−∆SE if ∆SE > 0

1 if ∆SE ≤ 0
. (17)

This dynamic method of generating an arbitrary probability distribution is
usually referred to as the Metropolis algorithm [14]. According to this condi-
tion, each Monte Carlo move is accepted or rejected based on the change in
the Euclidean action.

Technical Details of Simulation

In all of our simulations, the spacetime topology is fixed to be S1× S2, where
the periodic identification in the time direction has been chosen purely for
practical convenience2. The strategy for the simulation is the usual one from
dynamical triangulations. We first need to fine-tune the bare cosmological

2We have in fact run our simulation with other boundary conditions. The results have
shown be to largely independent of the boundary condition specified.
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constant to its critical value kc3(k0). As we know from the study of Euclidean
simplicial quantum gravity, one can hope to obtain a continuum limit for the
discretized gravity by taking the limit k3 → kc3(k0). Note that the critical value
kc3 depends on the value of the bare inverse gravitational coupling k0 (Figure
6).

- 1 0 1 2 3 4 5 6 7 8
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1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

2 . 2

 

 
k 3

k 0

 k c
3

Figure 6: The critical value of k3 as a function of k0.

The model described thus far is based on a grand canonical ensemble, since
the nature of the set of Monte Carlo moves used in the simulation allows the
total spacetime volume N3 to vary. For convenience, we will instead simulate a
canonical ensemble with a fixed volume N3 by adjusting the coupling constant
k3 to its critical value. Near the critical value kc3, the fluctuations of spacetime
volume are bounded within a certain range. To make sure that the volume is
peaked at a prescribed value V , with a well-defined range of fluctuations, we
add to the action (9) an extra term

δS = ε|N3 − V | , (18)

where ε controls the range of fluctuation and is taken to be 0.02 in all of our
simulations.

We then calculate the expectation values of suitable observables for these
dynamically generated quantum spacetimes, according to formula 14. We
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Figure 7: The value of the order parameter N22/N3 as a function of the inverse
Newton’s constant k0.

have performed the simulation for systems sizes of V = 8k, 16k, 32k, and 50k
tetrahedra. One sweep of the system is defined as V attempted moves. We
construct our initial configuration by taking a spherically symmetric spatial
triangulation and translate it in the time direction. Before any measurements
are taken, the systems needs to be thermalized so that the artificial initial
configuration is “forgotten”. We usually take the themalization to be about
105 sweeps. During the simulation, measurements are made at every 100
sweeps.

5 Results of Computer Simulation

In this section we will analyze data coming from our numerical studies of
three-dimensional causal dynamical triangulation of quantum gravity.

Phase Structure

We first run our Monte Carlo simulation with different values of k0 (from 1.0
to 6.0) to explore the phase space of our system. We use the ratio between
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the total number of (2,2) simplices N22 and the total spacetime volume N3 as
an order parameter. Figure 7 shows the expectation value of the ratio N22/N3

as a function of the coupling constant k0 for two different types of spacetime
configuration. We observe a phase transition at the critical value kc

0 of about
3.3.

Figure 8: A Monte Carlo snapshot in
the phase for k0 < kc0

Figure 9: A Monte Carlo snapshot in
the phase for k0 > kc0

In the phase where k0 > kc
0, the spatial volumes of successive spatial slices

become decoupled. A typical snapshot of the spacetime geometry during the
computer simulation is shown in Figure 9 where we plot the spatial volume N2

as a function of time t. Note that the plot is rotated around the time axis for
better visualization; it does not mean that the spacetime is axial-symmetric.
We notice from the plot that in this phase, the spatial volume can change from
essentially zero to a macroscopic size in one time-step, suggesting that there
is no correlation between spatial volumes separated by more than a few time-
steps. In fact, in this phase, the 3D CDT model can be viewed as a product
of uncoupled 2D Euclidean models and is thus not relevant to the 3D theory
of gravity.

On the other hand, in the phase where k0 < kc
0, we observe the emergence

of a well-behaved extended geometry from our simulation as suggested by a
typical snapshot for k0 = 2.0 shown in Figure 8. After a sufficient number
of Monte Carlo moves (typically about 100k sweeps), the system reaches a
configuration that fluctuates around an extended “ground state” geometry,
one that resembles a classical universe. It is to be noted that we have at no
stage specified a preferred background geometry. In this phase, the volumes
of successive spatial slices are strongly coupled. In fact, we will calculate the
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Figure 10: An illustration of the nearly classical universe described in the text.

volume-volume correlation function which is a coordinate invariant measure of
how much the volumes of two spatial slices are correlated as a function of the
separation in time and compare it to the correlation function of a nearly clas-
sical solution. The close resemblance of the two correlation functions justifies
our calling the geometry that emerges from our simulation the “ground state”
geometry. In the rest of the paper, we will only discuss the physical properties
of the model in this phase, with k0 = 2.0.

Extended Ground State Geometry

For a compact topology, the simplest solution to the Einstein’s equations with
a Euclidean signature and a positive cosmological constant is the symmetric
3-sphere. We can adapt the S3 solution to the S1 × S2 topology at hand by
cutting away two open balls at the two opposite ends of the S3 geometry and
attaching a thin cylinder I×S2 of radius a at the cut-off scale to the two ends.
The resulting geometry is very close to a solution to Einstein’s equations in
the sense that the contribution to the path integral from the cylindrical part
is negligible. A schematic illustration of this geometry is shown in Figure 10.

The correlation function for the discrete geometry is given by the formula
below.

C(∆) =
1

T 2

T∑
t=1

〈N2(t)N2(t+ ∆)〉 (19)

As seen from the above formula, the correlation function is translation invari-
ant in time and is calculated by averaging over independent configurations
sampled during the simulation. To calculate the correlation function of the
“nearly classical” solution, we use instead a continuous version (without the
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Figure 11: The correlation function. The dotted plot is the measured correla-
tion function of the system of size T = 80 and V = 50k. The continuous curve
corresponds to the nearly classical solution described in the text

averaging) of the above formula:

C(∆) =
1

T 2

∫ T

1

dtN2(t)N2(t+ ∆) . (20)

Figure 11 shows the correlation functions, where the dots represent the
measured values for a spacetime with total time T = 80 and total spacetime
volume V = 50k and the continuous curve corresponds to the “nearly classical”
solution. We have adjusted the radius R of the 3-sphere and the radius a of the
cylinder as free parameters to produce a nice fit through the measured values.
The result indicates that the universe that emerges from the simulation indeed
behaves semi-classically, at least as far as macroscopic geometric properties are
concerned.

Spectral Dimension

To further demonstrate that our simulation in fact produces a semi-classical
universe, we have also measured the effective dimension by superimposing a
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diffusion process on the discretized geometric ensemble. The method is de-
scribed in detail in [15]. The basic idea is to perform a random walk in a
given spacetime configuration after the Monte Carlo simulation has thermal-
ized. Starting from any tetrahedron, a random path is generated by randomly
walking to one of the four neighboring tetrahedra at each successive step.
From a large number of random paths of σ steps, one can extrapolate the
return probability P (σ), namely the probability of a random walk that starts
and ends at the same tetrahedron in σ steps. Since we are interested in the
region of spacetime with extended spatial volume, we will only start the ran-
dom walks on the spatial slice with the maximal spatial volume. Moreover,
we average over the return probabilities obtained with different starting tetra-
hedra and on independent spacetime configurations generated in the Monte
Carlo simulation.

The return probability for diffusion on fractal geometry is well-studied and
is given by the formula

P (σ) ≈ σ−D/2 , (21)

when the diffusion time is considerably smaller than N
2/D
3 . Here D is the

so-called spectral dimension, which is not necessarily an integer. The spec-
tral dimension can be extracted from the return probability by taking the
logarithmic derivative if the finite-size correction is neglected, i.e.,

D(σ) = −2
d logP (σ)

d log σ
+ finite-size correction. (22)

The result for the measurements of the spectral dimension is shown in
Figure 12. The following table lists the system sizes we work with and the
number of sweeps we perform before the measurement of spectral dimension.

T V # of sweeps
32 16k 200k
64 32k 180k
80 50k 100k

We first notice that at sufficiently large σ, the finite-size effect takes over
and drives the dimensionality down. This is particularly apparent for the
system with the smallest volume. Based on similar work in four dimensions
[3] we expect that the dimensionality should approach the value 3 at large σ
for our 3D model before the finite-size effect becomes dominant. However, the
measured dimensionality of the extended ground state universe overpasses 3 at
σ values beyond 150. We speculate that this may be due to the fact that the

19



0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
2 . 3
2 . 4
2 . 5
2 . 6
2 . 7
2 . 8
2 . 9
3 . 0
3 . 1
3 . 2
3 . 3
3 . 4
3 . 5
3 . 6
3 . 7

 T = 3 2  V = 1 6 k
 T = 6 4  V = 3 2 k
 T = 8 0  V = 5 0 k

D

σ

Figure 12: The spectral dimension as a function of the diffusion time σ, measured
for three different system sizes.

systems under investigation have not reached adequate thermalization during
the Monte Carlo simulation so that even though the macroscopic geometric
properties such as spatial volume exhibits a classical behavior, more detailed
geometric structure still does not resemble that of a three-dimensional classical
spacetime.

The number of steps or equivalently the diffusion time σ is a good charac-
terization of the length scales at which we are probing the spacetime. We ob-
serve that at small scales (σ < 100) the dimensionality is considerably smaller
than 3 which we believe is an indication of the highly non-classical behavior
at small length scales. This is an evidence that, microscopically, the geometry
is dominated by random quantum fluctuation so that the classical notion of
dimensionality becomes impertinent. We also believe that with sufficient ther-
malization and a large enough volume, the dimensionality should approach 3
for large σ to exhibit the smooth three-dimensional classical spacetime at large
length scales. For the case with spacetime volume of 16k and 200k sweeps,
which is the most thermalized among the three systems we have studied, we
indeed observe that the measured spectral dimension is nearly 3 before the
finite-size effect takes over at σ ≈ 300. Measurements of spectral dimension
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on more thermalized systems are currently in progress. There is hope that a
more accurate measurement will yield the result that the dimensionality ap-
proaches the value 3 asymptotically for increasing σ and will also allow us to
extrapolate the behavior of the dimensionality in the limit as σ → 0.

6 Conclusion

In sum, our numerical simulation of the three-dimensional CDT model has
produced results in agreement with the results obtained by Loll, and etc.
A well-behaved extended ground state universe emerges dynamically in the
Monte Carlo simulation. For the first time, measurements of the spectral
dimension of the emergent universe are conducted on a 3D CDT model. A
scale dependence of the spectral dimension is also observed. A more precise
measurement of the spectral dimension will hopefully yield more persuasive
results for the behavior of the dimensionality in the limit of large and small
length scales.

This project provides a basis for further work on CDT in three dimensions.
There are a number of generalizations to the model that are interesting to
study. In our simulations, we have restricted the spatial topology to be that
of S2. In the future, we can adapt the model to spaces of torus topology
and compare the results to analytical solutions based on other approaches to
quantum gravity. We can also examine the effects of matter fields (ex. a scalar
boson φ) coupled to gravity.
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