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Abstract 
 

The Robotic Multi-Agent Development System (RoMADS) is a project 
investigating the theory of single and multi-agent learning. Using an experimental 
platform, the goal of the project is to reach an analytical theory of learning by 
studying one or more agents as they adapt to an environment. My goal was to 
build a computer simulation of the RoMADS robots that would mimic as closely 
as possible the physical experiment, which involves small robots moving on a 
table within the arena walls. This simulation will allow the RoMADS team to 
predict the behavior of the actual robots in situations surpassing the physical 
limits of the experiment. 

 
1  Background 
 

The Dynamics of Learning project at 
UC Davis, part of the Science and 
Engineering Center, is investigating the 
the process of learning using the 
methods of dynamical systems, 
computation and information theory, 
statistical mechanics, and chaos theory. 
The RoMADS project uses an 
experimental foundation to develop the 
theory of single and multi-agent 
learning. It is quite unique in that most 
agent-based engineering projects rely on 
specific situations and determined 
environments to control the behavior of 
their agents. The RoMADS project, in 
contrast, is concerned with what happens 
when an agent is placed in some 
environment with very limited initial 
knowledge and left to explore on its 
own. The goal is to reach an analytical 

theory of learning that can predict the 
behavior of both natural and synthetic 
systems. 
 
1.1  What is learning? 
 
To look any deeper into this project, we 
must first understand what it means to 
learn. Learning is, put simply, taking the 
experiences, or interactions through 
whatever inputs an agent may have, and 
adapting the behavior according to the 
input patterns, as well as according to 
some objective. This idea of an objective 
is an important and very subtle point. 
First of all, these robots should learn 
without depending on human 
preconceptions. However, when they are 
learning, they must have some sort of 
objective, some notion of what is “good” 
or “productive.” Therefore, there must 
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be some subjective input of what this 
objective should be. 
 

Another way to describe learning is 
to think of an agent in some world, and 
every time it needs to make a decision, it 
is presented with an array of 
probabilities describing the possible 
“goodness” of every action. Learning is 
using the results of past actions and 
changing the probabilities of the choices 
that it has for future actions. At the most 
basic situation, with a single robot and 
its environment, the agent should adapt 
its behavior to achieve an objective, 
starting with random motion and moving 
towards maximizing some value, such as 
distance traveled before hitting a wall. 
From this point, we may add complexity, 
such as additional robots and more 
complicated arenas.  
 
1.2  RoMADS: Stage I 
 

In the previous stage of the project, 
the RoMADS team built and studied the 
first models of the robots. These were 
cube-like robots about six inches in 
height, with four sensors, one on every 
bottom corner. In a typical experiment, 
the agents were placed in a rectangular 
or elliptical arena, starting without any 
descriptive state; that is, they entered 
their world in a null state. An agent 
began moving only by making random 
decisions, and its sensors were triggered 
when it hit a wall or another robot. It 
subsequently would decide which way to 
go, although it could not tell the 
difference between a wall and another 
robot. Equivalent behavior, as a more 
natural example, is a newborn: it can 
wiggle legs and arms and move its eyes 
from side to side, but it does this without 
any clear objective.  

From the initial null state, the agent 
was able to recognize and add more 
states as it had more experiences. 
However, at this stage of the project, this 
adding of states was ad hoc: there was 
no objective function followed in order 
to add them. In many cases, the process 
was still effective since, for example, an 
agent could learn to follow a wall 
instead of repeatedly bumping into one. 
However, there was no way to measure 
whether or not this was optimal learning.  
 

In several cases, a robot with more 
detailed states and directions was able to 
move through the environment more 
effectively. As figure 1 shows, the more 
ideally engineered robot traveled more 
distance in a given amount of time than 
the one who was left to learn. Looking at 
this graph, an obvious question arises, 
“Why let the robots learn instead of 
engineering them in a certain way if that 
is more successful?” In answer to that, 
consider sending a robot to Mars. With a 
more determined engineering approach, 
we would need to know the whole set of 
parameters to describe the environment, 
but of course, we don’t. There may be 
aspects such as wind, solar radiation, or 
the rockiness of the terrain that we 
cannot foresee or cannot describe. If we 
can send the robot there with the ability 
to learn on its own, then this is not a 
problem since we are not required to 
describe beforehand all the possible 
states. 
 
1.3 RoMADS: Stage II  
 

In the current stage of RoMADS, a 
more advanced batch of robots are being 
built with several hardware 
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Figure 1. The learning robot initially behaves similarly to one making random decisions. As it 
adapts to the environment, the distance per time it travels approaches the “ideally” engineered 
robot. For more information on this project, see [2]. 
 
 
improvements over the last. For 
example, they are slightly smaller, move 
much more smoothly, and can 
distinguish between a wall and another 
robot. They use six infrared sensors to 
identify one another, and four infrared 
sensors around their base to detect the 
walls of the arena. This is important 
because it allows for the distinction 
between something static and something 
moving.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The new prototype of the Romads 
robots rely on six infrared sensors around 
the top to identify one another. The four 
wall sensors are located underneath at each 
corner of the base of the robot. 
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As the learning methods are improved, 
there are some techniques we would like 
to pursue: 
 
1. Collective learning. Currently we do 
not know how to share the information 
accumulated from one robot to another. 
Two robots in disparate environments 
may both have knowledge of some state 
or object, let’s call it K. However, they 
may have learned about K through very 
different experiences. For example, 
consider robot A who goes to a cafe 
every afternoon and eats a cookie, and so 
associates the concept of cookie from 
that of cafe. Next consider robot B, who 
eats cookies every time it is at 
grandma’s house. Then they both know 
what a cookie is, but they have learned 
this through completely different 
associations. Thus, if robot A is at the 
cafe and B is at grandma’s house, how 
do they share the information that there 
are cookies at each?  

There is another issue at hand. We 
not only want the robots to share 
information when they both have 
knowledge of object or state K, but we 
want them to be able to learn from the 
experiences of one another. For 
example, suppose A lives in the desert 
and B lives in a forest. Then, B decides 
to travel to the desert. We want to 
determine how A may transmit to B the 
knowledge of favorable and unfavorable 
desert states so that B may benefit from 
the knowledge that A already has.  
 

This possibility of sharing 
information creates a sort of super-
organism, in that each individual doesn’t 
experience everything, but by sharing 
knowledge, we no longer require that to 
happen. It becomes a sort of super robot 
that can gather data from disparate non-
local environments simultaneously. 

Clearly, there is a much broader model 
of its world when sharing is possible. 
Another everyday example of this is the 
knowledge that parents try to pass on to 
their children. 
 
2. Active Learning. Another path we 
are interested in following is active 
learning. Typically, machines learn 
passively, that is, they sit in some state 
and are fed data, like a teacher finding 
the pupil material to study. In a 
contrasting scenario, a student graduates 
from college and seeks out what is 
“interesting” on his or her own. With 
this process of active learning, we must 
decide on what we deem “interesting.” 
In this project, we define it as the 
information between random 
fluctuations of noise and completely 
predictable static information. For 
example, if we were to look at some 
binary data stream, a completely random 
output is uninteresting. On the other 
hand, a completely determined pattern, 
such as 110110110, is also uninteresting. 
So we switch channels and look for 
something new. Moving to the context 
of the robots, we would say that if it 
finds a straight line to follow, it is not 
learning and this is boring. And of 
course, if it bumps back and forth, 
always fluctuating without structure, this 
is also boring and there is nothing 
intelligent here. By using information 
theoretic measures, we quantify what is 
interesting. This is also where this 
project becomes more rigorous than the 
last. An attractive model of active 
learning is called Reinforcement 
Learning, as we’ll see later. As the 
project continues, this will be the 
method to determine how the robots will 
choose what to do for every action. 
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2  Simulation 
 

As a robot moves about its 
environment, we gather a stream of data 
of what it senses and the actions it 
makes. A fundamental point of this 
project is that there is some process 
going on in order to create the data 
stream. We, in turn, are taking the data 
stream and reverse engineering. As an 
analogy, suppose I were to listen to what 
you say and watch what you do. Can I, 
then, reconstruct your mind? In other 
words, we are receiving all of the 
information; can we reconstruct the 
mechanism that is producing it? 

More concretely, consider a single 
robot in its environment. Then, the 
environment is the bigger mechanism 
feeding back the data. By deciphering 
the information that returns, we then try 
to reconstruct the arena. In some sense, 
we may reach a concept of space solely 
by which sensors get triggered and how 
long the motors have run. 
 

My work this summer has been to 
complete a computer simulation, written 
in Python, that behaves as closely as 
possible to the physical system that we 
see on the table. Initially, I worked with 
previously written code to create a more 
complex and realistic simulation. The 
point of the simulations is to allow for 
predictions and studies that surpass the 
physical limits of the experiment. In this 
project, the goal is to build twenty-four 
of the new RoMADS robots. However, it 
is significantly more interesting as we 
allow the number of robots, n,  to 
increase. Emergent behavior, such as 
flocking and cooperative behavior, is 
much more likely at large n. Therefore, 
if we can align the behavior on the table 
with the computer simulation for twenty-
four robots, then once we pass our 

physical experimental limit for n, we can 
more confidently make predictions about 
what would really happen on the table 
with large n using the computer 
simulation.  
 

A natural question, then, becomes, 
“Why have the physical experiment at 
all?” This answer goes back to what I 
mentioned earlier about unintentionally 
adding too much information or our own 
biases to the simulation, as this may 
distort what we are really trying to study. 
These distortions can have huge and 
incorrect consequences. The computer 
simulations are running within set 
capabilities that do not necessarily 
recreate what is going on in the physical 
world. There are always unforeseeable 
unknowns in the real world which may 
escape a computer simulation. For 
example, when we are dealing with the 
robots on the table, they have no 
knowledge of their position in space- 
their x and y coordinate on the table. 
However, in the computer simulation, 
there is built-in information in the 
objects moving around on the screen 
such as internal position. Without even 
trying, just by creating an object on the 
screen, we have already empowered it 
with more knowledge than we will give 
the physical robots on the table. Of 
course, as the programmers, we can 
decide how we will use this information, 
but that level of decision and knowledge 
is what this project is trying to avoid, 
and what makes it unique. 
 

Another significant aspect of my 
work was to implement the graphics of 
the simulation. Although the graphics 
really function as a representation of the 
simulated robots, they are necessary in 
the early stages of building the 
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simulations in order to verify that the 
simulation is behaving as it should.  
 
 
3 Results 
 

Currently, the computer simulation 
well mimics the physical robots when 
they are behaving according to random 
decisions. Several unrealistic effects of 
the original programs were eliminated. 
For example, the first simulated robots 
would overlap with each other or escape 
through the arena walls. One of the first  

steps of my summer project was to fix 
bugs such as these. Also, the order of 
such processes such as detecting another 
robot, compiling all the sensory data, 
and transmitting this data to the 
decision-making mechanism is 
analogous to those of the actual robots. 
At this time, the initial stage of a more 
rigorous learning method is being 
developed, and the overall structure of 
the simulations were built so that this 
may be easily added to the current 
program.

 

 
 
Figure 3: An example of the graphics representing one of the simulations. The numbers 
are the identification tags of each robot.
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4 Future Work 
 

The simulation and graphics will 
surely be modified as the project 
continues. Also, as mentioned above, the 
learning process is yet to be connected to 
the program. This is the next immediate 
step after what I have done this summer, 
and it will implement the learning 
process called Reinforcement Learning  
[1]. 

The four parts of Reinforcement 
Learning are states, actions, rewards, and 
a policy. In this process, the agent 
interacts with the environment and the 
environment provides rewards. For an 
agent in a particular state, we want to 
know what the optimal action to get the 
most reward is, or the least amount of 
punishment. Also, we think of the states 
as the foundation for making decisions, 
the actions are the choices, and the 
policy is the set of rules the agent 
follows to make every decision. Figures 
4 and 5 show a simple example of 
Reinforcement Learning. 
  

To conclude with an interesting 
question: What does it mean to say that I 
know someone? Then when he’s in a 
new situation, I’ll say, “I know what 
he’ll decide to do.” I have built a model 
based on our interaction and have 
inferred how he’ll act. I have, to some 
extent, reconstructed what the 
mechanism is behind his decision-
making process. Like the robots, the 
better the model, i.e. better I know him, 
the better the prediction will be and 
hence the better connection between the 
past and the future. This connection 
between interpreting the past and 
successfully predicting the future is a 
crucial theoretical concept and practical 
concern for all areas of physics, 
mathematics, and computer science and 

in some sense, everything we, as 
thinking, learning human beings depends 
on our ability to understand the 
connections between the past and the 
future. 
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Figure 4: The set up of a simple Reinforcement Learning example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: At every step, the policy is changed as the agent adapts to received rewards. At the 
beginning, every direction looks equal. As the agent moves through the environment, it adapts to 
move towards state 2 in order to receive the maximum reward. 
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