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Abstract

A theoretical analysis on relativistic heavy ion collisions is presented. The
Glauber Model is studied through a comparison to the Hard Sphere Approximation–
a simpler model, using their calculations for participant multiplicity. The Glauber
Model is further studied through a comparison between its two different versions,
the Monte Carlo Glauber and the Optical Glauber, using their calculations for par-
ticipant and collision multiplicity from both of its versions, the Monte Carlo Glauber
and the Optical Glauber. The theoretical simulation generated from the Optical
Glauber’s calculations for participant multiplicity is also discussed. This simulation
is then used in the presentation and analysis of the

√
sNN =19.6 GeV data set at

RHIC using the STAR detector.

I Introduction

The study of relativistic heavy ion colli-
sions relates to both Nuclear and Parti-
cle Physics, and it deals with the behavior
of heavy ions when they collide after be-
ing accelerated to approximately the speed
of light. Currently, the fastest speed used
in these collisions is 0.99995c, where c is
3× 108. Experiments are conducted at lab-
oratories that have particle accelerators and
detectors. After several runs, data is then
collected and analyzed using computer pro-
grams. The central goal of the UC Davis di-

vision of Nuclear Physics is to study heavy
ion collisions in order to determine the exis-
tence of Quark Gluon Plasma (QGP), a new
state of nuclear matter. They receive a ma-
jority of their experimental data from the
Solenoid Tracker at RHIC (STAR), which
is located at the Brookhaven National Lab-
oratory in New York.

In this analysis, a theoretical approach
will be taken on heavy ion collisions by
studying the calculations from the Glauber
Model. This approach involves obtain-
ing a deeper understanding of the Glauber
Model’s complexities and creating a simula-
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tion that relates its theoretical calculations
for participant multiplicity to experimental
data. The relevance of finding a theoretical
simulation is that it serves as a basis for data
analysis. With the use of a generated sim-
ulation, the data set from the

√
sNN =19.6

GeV run at RHIC using the STAR detector
will be also studied in this analysis. The im-
portance of the final portion of this analysis
is that it addresses the presumed errors in
charged particle multiplicity and the trigger
inefficiency in the 19.6 GeV data set, and
it allows corrections to be made before the
results are published.

II Theory

A Introduction to Heavy Ion
Collisions

In relativistic heavy ion collisions, a colli-
sion between two nuclei is referred to as
an event. The two main types of events
include central, which is where the nucle-
ons hit straight on, and peripheral, which
is where the two nuclei graze each other
during the event. The degree of central-
ity is determined by the magnitude of the
impact parameter,which is the distance be-
tween the center of two nuclei. The number
of participants during a single event refers to
how many nucleons from one nucleus collide
with other nucleons in another nucleus. The
number of collisions during a single event
refers to all the nucleon-nucleon interactions
between participants.

B The Number of Collisions
and Participants

A very rough estimate for the number of
participants in a single event can be ob-
tained using the Hard Sphere Approxi-
mation (HSA). The HSA depicts the nu-
cleus as having a definite radius, R, which
means that no nucleons exist outside its ra-
dius. Within this approximation, the nu-
cleon density is constant throughout the en-
tire nucleus,

ρ(r) =
A

4
3
R3

≈ ρ0

where A is the number of nucleons in the
nucleus. A rough estimate of the number
of participants can be found simply by find-
ing the overlapping volume between the in-
tersection of the two nuclei and multiplying
this volume by the nucleon density,ρ0. The
amount of overlapping volume is determined
by the magnitude of the impact parameter.

The difference between the participant
multiplicity found using the HSA as com-
pared to a more realistic Glauber Model is
rather small until the most peripheral events
are considered [3]. Since the HSA depicts a
nucleus that does not have nucleons outside
its nuclear radius, this model cannot offer
an explanation for how there are still partic-
ipants and collisions at impact parameters
greater than twice the nuclear radius. This
approximation is also unable to provide a
way to estimate the total number of colli-
sions that occur during an event. The
Glauber Model provides a much more realis-
tic depiction of the nucleus and offers math-
ematical methods that can more accurately
calculate values for the participant and col-
lision multiplicity during a single event. It is
currently the most accepted model in heavy
ion collision research.
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Within the Glauber Model, the nucleus
is no longer depicted as having a definite,
definable radius. Instead, the model por-
trays the nucleus as having nucleons tightly
compacted in its center, which trail off into
an infinitely long, thin tail beyond the mean
radius. The density is no longer constant in
the Glauber Model, and it is parameterized
by the Woods-Saxon parameterization,

ρ(r) =
ρ0(1 + ω( r2

c
))

exp( r−c
z

) + 1

where ρ0 is the initial nucleon density,c ≈
1.07A

1
3 , and z is related to the nucleus’s

skin thickness. Within Figure 1, the re-
spective nucleon densities for Au of both
the Hard Sphere Approximation and the
Glauber Model are shown. Within the
Optical Glauber Model, the number of col-
lisions at a given impact parameter is based
on three different factors. The first factor
involves the probability of finding a nucleon
in the overlapping volume of nucleus A. The
probability for finding one of the A nucleons
is proportional to,

PA =
1

A

∫
ρ(
−→
bA, zA)dzAd2bA =

1

A

∫
TA(b)d2bA

where,

TA(b) =

∫
ρ(
−→
bA, zA)dzA

is the thickness of A. The second factor in-
volves the probability of finding a nucleon
in the overlapping volume of B. The proba-
bility for for finding one of these B nucleons
is proportional to,

PB =
1

B

∫
ρ(
−→
bB, zB)dzBd2bB =

1

B

∫
TB(b)d2bB

where,

TB(b) =

∫
ρ(
−→
bB, zB)dzB

is the thickness of B. The final factor in-
volved in the probability of a nucleon-
nucleon interaction involves the cross-
section for an inelastic collision, which is
where the nucleons interact with each other
instead of passing by each other unaffected.
One of the most simplest expressions for this
probability is,

σinelasδ(
−→
b −

−→
bA −

−→
bB)

where σinelas is the magnitude of the inelas-
tic cross-section [3]. This cross-section is de-
termined by

√
sNN , the initial energy of the

nuclei in the event, and is 42±1 when
√

sNN

is equal to 200 and 130 GeV [2]. After in-
corporating all these facotors,

PAB(b) =
σinelas

AB
TAB(b)

where,

TAB(b) =

∫
d2sTA(s)TB(|

−→
b −−→s |)

and s is the distance from the center of nu-
cleus A to any point within nucleus B. The
number of collisions during an event is re-
lated to this probability by,

Ncoll = (AB)PAB = σinelasTAB(b)

The number of participants is related to the
number of collisions such that it is based
on the probability for a nucleon from A to
collide with each of the nucleons in B. The
probability for a nucleon,h, from A to have
n collisions,
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Figure 1: This is a plot of the densities of Au for both the Woods-Saxon and Hard Sphere
Approximation as a function of r.

PAh(n, b) =

(
A
n

) [
1− σinelas

A
TA(b)

]A−n

where, (
A
n

)
=

A

(A− n)!n!

The total number of participants in A and
B can be found by integrating over A’s over-
lapping cross-sectional area, weighing it by
the sum of probabilities for a nucleon from
A interacting with the nucleons in B, and
doing the same for B, which will produce
the expression,

Npart(b) =∫
d2s[TA(s)(1− exp(σinelasTB(|

−→
b −−→s |))

+(TB(|
−→
b −−→s |)(1− exp(σinelasTA(b))]

where,

[
1− σinelasTA(b)

A

]A

≈ exp(−σinelasTA(b))

if σinelasTA(b)
A

<< 1.
The one problem with the Optical

Glauber Model is that it offers a slightly
inaccurate portrayal of the nucleus. This
is because it eliminates all randomness by
treating the nucleons as a continuous fluid,
which are fixed in space for every nucleus.
The Monte Carlo version of the Glauber
Model resolves this problem by randomly
populating the nucleus with nucleons ac-
cording to the Woods-Saxon nucleon den-
sity function. If the cross-sectional area be-
tween a nucleon in A and a nucleon in B
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is equal to the inelastic cross-section, or in
terms of the radial distance between the two
nucleons,

rAB =

√
σinelas

π

then the nucleon in A will interact with the
nucleon in B; both will be participants. If
this is done for each nucleon in both nuclei,
the number of collisions and participants
can be obtained for one possible nucleon
population in A and B. This process is usu-
ally repeated in order to take the average
number of participants and collisions at a
given impact parameter.

C Relating Theory to Experi-
ment

One of the problems with finding the num-
ber of participants and collisions at a given
impact parameter is that these calculations
cannot immediately be related to theory.
The Glauber Model can only calculate dis-
tinct values for the number of participants
and collisions for a single event. These cal-
culuations also do not include any fluctu-
ations. What is even more problematic is
that the number of participants and colli-
sions are two quantities that cannot even
be experimentally measured.

However, these issues can be resolved
by correlating the theoretical calculations
of participant and collision multiplicity to
the following two experimentally measure-
able quanties: charged particle multiplicity,
which refers to the number of charged par-
ticles produced during an event, and how
many events occurred per a given multiplic-
ity.

Without including fluctuations in the
theoretical calculations, it is assumed that

only a certain number of collisions and par-
ticipants can occur at a given impact pa-
rameter. To incorporate statistical variation
in these quantities, the number of events
is redistributed in a Poisson distribution
where,

〈Npart〉 =
√

Ntheopart

and

σdev =
√

Ntheopart

In order to predict the probability of
having a given amount of participants and
collisions the geometric cross-section is con-
sidered. This cross-section can be expressed
as,

dσ

db
= 2π

∫
b(1− exp(−σinelasTAB(b)))d2b

which is shown in Figure 2. As a result
of the Woods-Saxon parameterization, the
cross-section slowly tails off to zero instead
of sharply dropping off to zero when b ≈ 2R,
where R is the mean nuclear radius. The
probability for having a given multiplicity
is proportional to,

dσ

dNcoll

or
dσ

dNpart

which both can be found by applying
the chain rule to the preceding equation.
Each of the Poisson distributions are then
weighed by their respective dσ

dNpart
or dσ

dNcoll

and added together to create a continuous
distribution of the number of events versus
participant or collision multiplicity.

The final step in relating theory to ex-
periment involves a conversion between the
number of participants or collisions and
the number of charged particles experimen-
tally received. This conversion is achieved
through a correlation between the mean
number of charged particles and the mean
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Figure 2: This is a plot of the geometric cross-section -vs-b for Au. As the impact param-
eter increases, the probability of having an event increases.

Npart or Ncoll. An additional 0.87 pref-
actor must also be considered in the ex-
perimental data due to tracking biases [2].
Once this conversion factor is acquired, each
Npart or Ncoll is then multiplied by this con-
stant, which creates a number of events ver-
sus charge particle multiplicity distribution.

D Application of Theory

Finding a model that agrees with exper-
imental data can be extremely useful be-
cause it can be used later to analyze ex-
perimental results through comparison. A
prime example of where theory could be
used to analyze data from relativistic heavy
ion collisions is in determining trigger de-
tector efficiencies. At STAR, the two trig-
gers are the Central Trigger Barrel (CTB),

which records charged particle multiplicity,
and the Zero Degree Calorimeter (ZDC),
which records the number of neutrons that
are spectators in an event. The efficiency
of these trigger detectors refers to how well
they are able to function during a run. In or-
der to approximate the collective efficiency
of both the CTB and the ZDC, a simple ra-
tio can be taken,

εtrigger =
Nchmeasured

Nchtheory

where the numerator is the experimental
multiplicity and the denominator is the the-
oretical multiplicity. If the experimental
multiplicity is truly a subset of the theoret-
ical multiplicity, then this ratio will range
from zero to one. However, if the ratio is
simply a comparison between two indepen-
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dent sets, then the range of the ratio is no
longer restricted to being less than or equal
to one.

III Techniques

A Computer Programming

In relativistic heavy ion collisions, com-
puter programming has become the basis for
both experimental and theoretical research.
While each experimental run yields a large
amount of data that needs to be analyzed,
manipulated, and plotted, theoretical cal-
culations require additional tasks such as
integrating complicated functions over ob-
scure regions. Although there are no re-
strictions on what language to use when
writing programs for research in relativis-
tic heavy ion collisions, most programs are
written in C++. This preference has highly
been influenced by the popularity of Root,
an object-oriented program specifically de-
signed for data analysis, which can only in-
terpret C++ command language.

Regardless of what language is used in
an algorithm, numerical integration is one
of the most fundamental capabilities a pro-
gram designed for theoretical calculations
must have. Regardless of whether any of
the involved theoretical expressions can be
integrated by hand, it is much easier to cre-
ate a computer program that can numerical
integrate these expressions. Although nu-
merical integration must be over a definite
region and does not provide a function to
the integral, it works extremely well when
only numerical values are desired. In C++,
numerical integration can be written using
for loops and increasing each recursive vari-
able by a desired width, dx . For most of
the programs written for this project, the

incremental width was 0.5 fm, which relates
to the smallest amount that can currently
be measured. Multivariable numerical inte-
gration in C++ is simply achieved by em-
bedding for loops into other for loops.

As mentioned before, one problem in-
volved in creating a program that uses nu-
merical integration to carry out calculations
is that it cannot provide a function to the
integral, which can then be inverted in or-
der to find the respective independent vari-
ables for evenly spaced dependent variables.
However, this issue can be worked around
by using very small incremental widths in
the forloops and utilizing the if command
to store only the independent variables that
produce the evenly spaced dependent vari-
ables. This somewhat time-consuming tech-
nique was only used for this analysis when
obtaining the respective impact parameters
of evenly spaced values of Npart and Ncoll.

Another main capability that is neces-
sary for carrying out theoretical calcula-
tions is being able to distribute numbers
randomly according to a given distribution.
Although such a capability can definitely be
written from scratch, Root has built in func-
tions that can redistribute numbers accord-
ing to either built-in probability distribu-
tions or user-defined functions. While the
Poisson function of the Trandom, pseudo-
random number generating, class was used
to redistribution the participant multiplic-
ity, the GetRandom3 function of the TF3,
three-parameter function, class was used
to randomly populate the nucleus for the
Monte Carlo Glauber Model. Although
both of these functions can only generate
one random number at a time, they can gen-
erate the desired amount of random num-
bers when embedded into a for loop.
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IV Results

A Comparing Models

In order to develop a deeper understanding
of the Glauber Model, the Optical Glauber
Model and Hard Sphere Approximation cal-
culations for participant multiplicity were
compared. When comparing these values,
it became quite apparent which regions the
accuracy of the Glauber Model affects the
most. These two main regions occurred in
the most central and peripheral regions, as
seen in Figure 3. This agreed with what
had been predicted before the calculations.
The reason why the HSA’s average partici-
pant multiplicity was so large at b = 0 rel-
ative to the Optical Glauber was because
it is where the assumption that every nu-
cleon within the region of nuclear overlap
will participate was affected the most. The
HSA’s average number of participants im-
mediately drops off to zero when the impact
parameter is approximately twice the aver-
age radius, instead of slowly tailing off as in
the Optical Glauber curve. This was due to
the HSA’s assumption of a definite nuclear
radius. Therefore, the Glauber Model’s in-
corporation of the probability of having a
nucleon-nucleon eliminates the extreme cal-
culations found using the HSA.

Surprisingly, the Monte Carlo Glauber
calculations for participant and collision
multiplicity were not as close to the Opti-
cal Glauber’s same calculations. The par-
ticipant multiplicity found using the Monte
Carlo Glauber was consistently higher than
the participant multiplicity found using the
Optical Glauber. The ratio between the
former and the latter also increasingly di-
verged from unity as the impact parameter
increased,which can be further observed in
Figure 4 and Figure 5. Although the rapid

fluctuations of the ratio at b ≈ 14 fm are
to be expected because the probability of
a collision is extremely unlikely in such pe-
ripheral events, the ratio for more central
events should have been closer to one.

There was also disagreement between
Monte Carlo’s and Optical’s calculations
for collision multiplicity. While the Monte
Carlo’s calculations for participant multi-
plicity were always higher than the Opti-
cal’s calculations, such consistent behavior
did not occur for collision multiplicity. Al-
though the Optical’s calculations for the
number of collisions were higher for the
most central events, the MC’s calculations
eventually became larger as the impact pa-
rameter increased, seen in Figure 6. Ex-
cept for the most central events, the ratio
between the MC and the Optical collision
multiplicity was also greater than unity, as
in Figure 7.

The lack of agreement between the two
versions of the Glauber Model occurred
most likely because of the Monte Carlo’s
random placement of the nucleons far away
from the center. This would have caused
the bulk of the nucleon density in center to
be pushed out, which could have never oc-
curred in the Optical’s fixed nucleons, which
are treated as being part of a continuous
liquid that thins out as it leaves the cen-
ters. The Monte Carlo’s nucleon density
push would result in more particles being at
some distance away from the center, which
would cause a higher number of participants
at large impact parameters than the Optical
anticipates. The presence of nucleon bulk at
a distance away from the center would also
affect the number collisions in the follow-
ing two ways. One effect would be that less
collisions could occur in the most central
events, or events in the 0−30% centrality re-
gions likewise, than the Optical anticipates
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Figure 3: This is a plot of the participant multiplicity found using the Hard Sphere
Approximation and the Optical Glauber Model.
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Figure 4: This is a plot of the participant multiplicity found using the Optical Glauber
and the Monte Carlo Glauber.
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Figure 5: This is a plot of the ratio of the Monte Carlo over the Optical participant
multiplicity. Observe how this ratio is greater than one at all impact parameters.
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Figure 6: This is a plot of the collision multiplicity found using the Optical Glauber and
the Monte Carlo Glauber.
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Figure 7: This is a plot of the ratio of the Monte Carlo over the Optical collision multi-
plicity. Observe how this ratio is greater than one at most impact parameters.

because less nucleons are populated around
the center. Another effect would be that
more collisions would occur in more periph-
eral events, or events in the 30− 100% cen-
trality regions, because more nucleons are
away from the nucleus. A summary of these
results can be further observed in Table 1
and Table 2.

B Glauber Simulation

To generate a Glauber Simulation of numer-
ous events, the Optical Glauber calculations
were chosen instead of the Monte Carlo
Glauber calculations. This was because no
model was more accurate than the other,
and it was much more efficient to calculate
even-spaced number of participants using
the Optical Glauber Model. The final gener-
ated curve, which was generated by manip-
ulating the theoretical calculations for par-
ticipant multiplicity, strongly resembled the
curve generated using experimental data,
Figure 8. As expected, the number of events

for lower multiplicities is higher than the
number of events for higher multiplicities
because the events with large impact pa-
rameters were more probable. Although the
theoretical simulation curve peaked higher
than the raw data around Nch ≈ 8, the
curves aligned quite well at larger multiplic-
ities.

C Trigger Efficiency

In order to analyze the trigger efficiency at
19.6 GeV, the raw data sets from the 200
GeV and 130 GeV runs were scaled down by
eye to match up with the 19.6 GeV raw data
set as much as possible; the same scaling
procedure was done to the Glauber Curve.
Although each of the raw data sets aligned
quite well for the 0−10% and 30−70% cen-
trality regions, the 19.6 GeV data diverged
greatly in the 10− 30% and the 70− 100%
centrality regions, as depicted in Fig. (8).
The intensity of this divergent behavior was
made even clearer after the ratios between
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dσ
db

〈NpOP 〉 〈NpMC〉
0− 10% 331.78 337.03
10− 30% 225.07 236.02
30− 50% 97.09 106.43
50− 70% 34.58 41.19
70− 100% 2.43 3.44

Table 1: Table on the mean participant multiplicity based on the percentage of the dσ
db

distribution.

dσ
db

〈NcOP 〉 〈NcMC〉
0− 10% 1025.27 1008.86
10− 30% 573.13 571.53
30− 50% 185.21 190.40
50− 70% 43.16 49.17
70− 100% 2.19 2.97

Table 2: Table on the mean collision multiplicity based on the percentage of the dσ
db

distribution.
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Figure 8: This is a plot of the Glauber Simulation and a set of raw data from a√
sNN = 200 GeV .
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each of the data sets and the Glauber Sim-
ulation were taken, which is shown in Fig-
ure 10. While the efficiency curves for the
130 GeV and 200 GeV runs were centered
around unity for most multiplicities, the ef-
ficiency curve for the 19.6 GeV curve dips
greatly from unity in 10−30% and 70−100%
regions of centrality.

The observed inefficiency during the 19.6
GeV run has been determined to be caused
by the zero degree calorimeters (ZDC) [1].
In higher energy collisions, such as

√
sNN =

200GeV or 130GeV, the neutral spectators
in an event have enough longitudinal mo-
mentum to prevent their opening angle from
extending the angle covered by the ZDC.
However, the insufficient amount of longitu-
dinal momentum in the

√
sNN =19.6 GeV

allowed the spectators to have a larger open-
ing angle than the ZDC coverage. This
was the main cause for the inefficiency for
events with impact parameters of ≈ 8 fm
or less. The only reason why the most cen-
tral events, or the events within the 0−10%
centrality bins likewise, were not affected by
this inefficiency is because the efficiency of
the CTB was able to compensate for the
ZDC at these impact parameters. The di-
vergence during the most peripheral events,
which were the events within the 70− 10%
centrality bins, occurred because the frag-
ments of nuclear matter did not break up
into protons and neutrons after a colli-
sion. Instead, the spectating neutrons were
bound into charged particles, such as alphas
and deuterons, and deflected from the ZDC
by the DX magnet, which lies in front of the
ZDC [1].

Despite the extremely divergent behav-
ior of the

√
sNN =19.6 GeV data set within

the 10−30% and 70−100% centrality bins,
the mean number of charged particles across
these bins was no more or less than a unit

from the simulation curve, as shown in Ta-
ble 3. The ranges differed slightly from
the table in [1]because the centrality re-
gions were based on the theoretical simu-
lation curves’s cross-section instead of the
cross-section from

√
sNN =130 GeV. How-

ever, if the same cutsfor the centrality bins
as in [1], then the mean numnber of both
charged particles and participants was still
no more or less than a unit from the simu-
lation curve, as shown in Table 4. These re-
sults ultimately showed how the experimen-
tal data was not largely affected by the trig-
ger efficiency as presumed before this anal-
ysis.

V Conclusion

Within this analysis, the theoretical calcu-
lations from the Hard Sphere Approxima-
tion and the two different versions of the
Glauber Model were reported. The compar-
ison between the calculated values for par-
ticipant and/or collision multiplicity por-
trayed most of the complexities within the
Glauber Model. The resultant simulation
generated using the the Optical Glauber’s
calculations for participant multiplicity was
analyzed and discussed. From the compar-
ison between the simulation and the raw
data from a

√
sNN=200 GeV, the Glauber

Model seems even more remarkable than be-
fore. Not only can its mathematical expres-
sions be manipulated to predict what oc-
curs experimentally, but the theory behind
the model provides an intuitive idea of what
physically occurs during an event. The re-
sults from the comparison between the sim-
ulation and the three raw data sets were also
presented and discussed, in addition to each
of their respective trigger efficiencies. From
these results, it can be concluded that the
trigger efficiency of the

√
sNN =200 GeV

13



Nch
0 50 100 150 200 250 300 350

E
ve

n
ts

1

10

210

310

 Glauber Simulation 

 200 GeV Raw Data 

 50-70% 

 30-50%  10-30%  0-10% 

 70-100% 

Scaled 200 GeV & Glauber Simulation

Nch
50 100 150 200 250 300 350

 Glauber Simulation 

 130 GeV Raw Data 

 50-70% 

 30-50%  10-30%  0-10% 

 70-100% 

Scaled 130 GeV & Glauber Simulation

Nch
50 100 150 200 250 300 350

 Glauber Simulation 

 19.6 GeV Raw Data 

 50-70% 

 30-50%  10-30%  0-10% 

 70-100% 

19.6 GeV & Scaled Glauber Simulation

Figure 9: This is a plot of the number of events from each data set. Observe how only
the 19.6 GeV data set exhibits divergence from the Glauber Model predictions.

Centrality Nch Range 〈Nch19.6GeV 〉 〈NchGlauber〉
0− 10% 233− 374 280.31 279.38
10− 30% 115− 233 167.21 168.10
30− 50% 48− 115 76.51 77.99
50− 70% 14− 48 29.03 28.18
70− 100% 0− 14 7.86 6.38

Table 3: Mean Nch based on centrality of the cross-section of the Scaled Glauber.

Centrality Nch Range 〈Nch19.6GeV〉 〈NchGlauber〉 〈Np19.6GeV〉 〈NpGlauber〉
0− 10% 237− 374 282.36 281.74 185.85 185.47
10− 30% 117− 233 170.323 170.97 112.13 112.56
30− 50% 48− 115 77.21 78.82 50.83 51.89
50− 70% 14− 48 29.03 28.18 19.11 18.55
70− 100% 0− 14 7.86 6.38 5.17 4.20

Table 4: Mean Nc and Np based on the cross-sectional cuts taken in [1].
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Figure 10: This is a plot of the efficiencies from each data set. Observe how only the 19.6
GeV data set exhibits divergence from one.
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data did not really affect the charged parti-
cle multiplicity as much as what had been
anticipated.

In one aspect, the objective of this the-
oretical approach has been achieved, such
that a deep enough understanding of the
Glauber Model was obtained to construct
a simulation that could be successfully ap-
plied to experimental data for data analysis.
However, in another aspect, the objective
of this theoretical approach was not truly
fulfilled. While a complete understand-
ing of the Glauber Model was supposed to
be acquired, several questions that devel-
oped during this analysis that remain unan-
swered. The most prominent question that
remains unanswered is why the two versions
of the Glauber Model differ in their calcula-
tions for participant and collision multiplic-
ity. If they differ in these calculations, it is
certainly possible that they differ in other
calculations as well. In the future, it would
be interesting to see whether or not con-
sidering nucleon-nucleon potential energy
would change the Monte Carlo Glauber’s
calculations by preventing nucleons from
laying on top of each other. It would also be
interesting to see if the divergence of the cal-
culations from these two versions decreased
as atomic number decreased. Another ques-
tion that still remains is why the inelastic

cross-section remained constant throughout
several nucleon-nucleon interactions. If a
nucleon-nucleon interaction truly occurred,
why wasn’t energy lost from one nucleon
as it interacted with the other nucleon?
Wouldn’t a nucleon eventually lose enough
energy after a certain number of collisions
to no longer be able to interact with other
nucleons? It would also be interesting to
attempt to track the number of collisions
each nucleon had and change the amount of
remaining energy they had after each colli-
sion.

While these questions may remain unan-
swered until the distant future, this theory
did produce a simulation that was applica-
ble to experimental data, which is available
for future data analysis.
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