MONTE CARLO STUDIES OF HUBBARD MODELS

Helen Craig

ABSTRACT

This summer, I studied two variations of the extended Hubbard model: the
extended Hubbard-Holstein model and the extended Hubbard model with staggered
potential. My goal was to write programs for these two models, to test these programs
for accuracy, and then to derive a phase diagram from the data that these programs would

produce. The technique that I used was the world line quantum Monte Carlo method.

BACKGROUND

For many years, the Hubbard model has been studied both for its simplicity and
for its complexity, along with its versatility. The Hubbard model in its simplest form is a
one dimension chain of atoms with one orbital each. Each of these orbitals is allowed
two electrons, one up spin electron and one down spin electron. The purest form of the
Hubbard model has been studied extensively. But as mentioned earlier, the Hubbard
model is adaptable in simulating many different materials with a variety of properties.
Among these “flavors”, we studied this summer the Hubbard-Holstein model and the
Hubbard model with staggered potential.

The extended Hubbard model has an energy of
-t2(cfig CirrotH.c)+UZ(n i*n )+VZ(n i+n i)*(n i+1+n i+1),

where —tZ(c; s Ciy1.0 + H.C.) is the component from the kinetic energy of the hopping



electrons; UZ(n i*n i) is the energy form onsite electrons; and
VZ(n i+n i)*(n i+1+n i+1) is the energy from near neighbor electrons. i is the index of
summation and the spatial site of the atom, n is the down spin electron on atom i, n is
the up spin electron on atom i. If there are no up spin (down spin) electrons on the atom,
then n (n ) is equal to zero. If the spatial site is occupied by an up spin (down spin)
electron, then n (n ) is equal to one.

The staggered potential has an energy of AZ(-1)'(n i+n i). This energy is similar

to the energy from V (intersite repulsion). the major difference between these energies is

that where the energy VZ(n i+n i)*(n i+1+n i+1) has highest energy when two electrons are
sitting on the same site with a near neighbor atom that also has two electrons (E=4V) and
low energy if one orbital is empty no matter the number of electrons on the other orbitals

(E=0); the staggered energy, on the other hand, has high energy if a even space is
occupied by two electrons (E=2A), lower energy if no electrons are in the orbital (E=0)

and lower still energy if there are two electron on an odd space orbital (E=-2A). What
this model physically represents is a material made of two different types of atoms.
These atoms alternate between even and odd sites. The odd sites have the atoms that are
more metallic which explains why the electrons prefer to be on these atoms.

The Hubbard-Holstein model represents a lattice that has become distorted. The
Hubbard-Holstein model is more complicated that the staggered potential and has three
components to its energy. The Holstein model, in its simplest form is a lattice of atoms
with a phonon sitting on each atom where a phonon is just a quantized representation of

the lattice distortion. The atom and phonon are similar to a mass on a spring system



where the atom is the mass and the phonon is the spring. The energy is given by:

> 1/2*m(x* )2+ 1/2* m* [ (X-Xw-1)/ (B/L)]?, where the first part is the potential energy and
the second part is the kinetic energy. m is the mass of the atom, x is the amount of
distortion or the phonon, w istheangular velocity, B isthe inverse temperature and the

amount of total imaginary time, L is the number of time slices and t is the index of

summation and the time site.
When electrons are also included in the system, an additional component of the

energy is included that couples the electrons to the phonons. This addition is

A*X*(n i+n i-1) where A isthe el-ph coupling.

TECHNIQUE

The method that we used to study our models is the world line quantum Monte
Carlo method. This version of Monte Carlos method is unique for its use of imaginary
time as a second dimension in addition to space. This method also uses world lines to
express the hopping of the electrons where world lines can be defined simply as lines on
a time-space graph, which denotes the progression of events.

So in the WLQMC method in addition the spatial dimensions is a dimension of
imaginary time. For every point of time there are two time slices on the Monte Carlo
grid. During the first time slice the electrons are allowed to hop between atoms 1 and 2,

3 and 4, etc.



During the second time slice, the electrons are allowed to hop between atoms 2 and 3, 4
and 5, etc.
This division gives rise to a checkerboard pattern which the electrons are allowed to cross

every other square on the board (the blue squares).

The world lines connect the electrons in the space/imaginary time grid and reveal
the hopping of the electrons. The allowed moves are called pulling the world lines.
Essentially, the move suggests that an electron is moved so that it sits on an atom next to

its current location during the duration of some time slice. The world line is translated



over in two locations: at the beginning of the time slice and at the end of the time slice.
The hopping kinetic energy and probability from the hopping kinetic energy is
calculated depending on the way that the world lines vertically transverses the squares
that they are allowed to hop across. If no world lines or two world lines are on the square,
the KE is zero and the probability is one. If a single world line runs across the square, the
KE is tanh(t*B/L) and the probability is cosh(t*B/L). If a single world line runs down

the side of the square, the KE is coth(t*B/L) and the probability is sinh(t*B/L).

CALCULATIONS / RESULTS

The majority of results that have been obtained from the WLQMC programs are a
number of checks. Some of these checks involved setting a few of the variables to zero
and comparing the WLQMC data to that of other approaches such as Lanczos method
and exact diagonalization. The world line quantum Monte Carlo program, in addition to
finding the different energies of the system, calculates the spin density wave, the charge
density wave, the spin density wave susceptibility and the charge density wave

susceptibility.
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Figures 1 and 2 were produced as a test run for the Hubbard model without the

staggered potential and without the phonons. Both the Lanczos values and the WLQMC



data were obtained using open boundary condition to make the two systems more
comparative to each other. The Lanczos has a temperature of zero and the WLQMC was

run for temperature equal to .01.
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Figure 3 is a comparison between the WLQMC data and data obtained by exact

diagonalization for the staggered potential. Both programs where run for one electron on

an eight-site lattice. For small A and large [3, the data seemed to agree the best.
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Figure Number range Figure WLOMC vs. Lanczos: Energy for the extended Hubbard model with
staggered potential using OBC

Figure 4 also illustrates the accuracy of the WLQMC method with staggered
potential compared to the Lanczos method. Both methods where utilized with open
boundary conditions so as to make them as similar as possible. The temperature in the
WLQMC simulation was .01 while the Lanczos was for temperature of zero.

The spin density wave is defined by: SDW (§)=1/(N*L)*X (n i-n i)* (n i+j-n i+j);
And the charge density wave is defined by CDW (§)=1/(N*L)*Z (n i+n i-1)* (n i+j+n i+j-
1) where j is the number of spatial sites over from atom i; The susceptibility of the spin

density wave is defined by:



Xspw )=1/(N*L)*2222 (n ik-n ik)* (n i+ik+m-N i+jk+m); and the susceptibility of the

charge density wave is defined by: Xcpw (j)=1/(N*L)*2222 (n ik 4+n ik -1)* (n i+jk+m
+n i+jk+m-1); where k is the time site of the atom and m is the number of time sites up
from time k. The variables i, j, k, and m are all indexes of summation. The susceptibility
of the spin density wave is a measurement of how susceptible a system is to be in the
SDW phase and the susceptibility of the charge density wave is how susceptible a system
is to be in the CDW phase.

If U is large, there will be a strong onsite repulsion and the following configura-

tion will result:

The energy per site of this system will be equal to V. Because of the up spin-down spin-
up spin-down spin pattern, this phase is called the spin density wave phase.
If V is large, there will be a strong intersite repulsion and the following configura-

tion will result:

The energy per site of this system will be equal to U/2. Because of the charge-no charge-
charge-no charge pattern, this phase is called the charge density wave phase.

The phase transition between these two phases occurs when V=U/2.



When A or A is nonzero, the phase transition no longer will fall upon this line. The

calculations of Xspw and Xspw help to locate the point where the system has been

transformed from SDW phase to CDW phase or vice versa if one of the variables V, U,

A or A is increased as a function of Xspw and Xspw. If the system is dominated by the up
spin-down spin-up spin-down spin pattern, the susceptibility of spin density wave will be
large. Conversely, if the system is dominated by the charge-no charge-charge-no charge

pattern, the susceptibility of charge density wave will be large.
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Figures 5 and 6 show the susceptibilities for CDW and SDW for A=0and 1.

Without the hopping parameter, we predicted that the phase transition would occur at

V=U/2-A. In other words, as we turned delta on, we expected the charge density wave to



be invoked and for the spin density wave to be suppressed. This is exactly what these
graphs reflect although not necessarily according to the equation since the inclusion of
the hopping term, t.

A technique that we just began to utilize is finite size scaling. In an infinite sys-

tem (the number of spatial sites is equal to infinity) X(y)=(y-yc)Y where y=V, U, A, or A,

Yc is the critical point, and X= Xspw Or Xcow. If the spatial sites are finite, another related
equation applies given by X(y,N)=N ™" *f( N**(y-yc)"" ) wheref, y and v are unknown
and N isthe number of spatial sites. If y=yc then x(y,N)*N Y=f(0). Thisissignificant
since this means that at the critical point, yc, the function x(y,N)*N "isindependent of

N. Soif x(y,N)*N " is plotted for anumber of different lattice sizes on the same graph,

the plots should cross at the critical point. Preliminary results look promising as illustrat-
ed infigures 7 and 8. Figure 7 shows plots for N=4, 8, 16 and 32 of xCDW before finite

size scaling and figure 8 demonstrates the graphs after being multiplied by N ™.
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The energy of the phonons in the Hubbard-Holstein model can be solved exactly

if no electrons are in the system (or if the el-ph coupling is set to zero). In addition, due

to the properties of the harmonic oscillator, the kinetic energy of the phonons should al-



ways equal the potential energy. The energy is given by E:w/(e‘*’*ﬁ-l)+w/2. figure 9 and
10. both illustrate the accuracy of the WLQMC code by plotting both the results from the

program and the actual energy.

MN:8 L:8 (B:1 mass:3
warm up:1e5 measurements: 1e5

T T T T T T T T T T T T T
KE
L actual
0.0
0.5
04 1 | 1 | 1 | | | 1 | 1 | ! | 1
0 025 05 0FS 1 1.25 1.5 1:75 2

Figure Number range Figure WLOMC vs. actual: KE of the Holstein model

MN:8 L:8 B:1 mass:3
warm up:leb measurements: 1eb
0.9 T T T T T T T T T T T T

== BPE
0.8 actual

0.7 =

0.6 —

0.5

L L L L L L L
0 0.25 0.5 0.75 1 1.25 1.5 1.75

(]

Figure Number range Figure WLOMC vs. actual: PE of the Holstein model



Additionally, if the kinetic energy has an w of zero, this energy can be simplified
so that the term w/2 disappears so that KE=w/[2(e‘*’*B-1)]. The expansion of e* is given by
x%0!+x'/1!+x%/2!... This expansion allows KE to be simplified to
W[ 2(w* B+(w* B )72!+..)]=1/[2(B+w* (B )?/2!+...)] and if w of zero, KE=1/(2*B). This
property of the kinetic energy was confirmed by the Monte Carlo program and is evident

infigure 11.
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When both phonons and electrons where included in the system, and the el-ph
coupling was turned on, the results were very much similar to those produced by the stag-
gered potential. As the electron-phonon coupling was turned on and increased, the

charge density wave was increased while, conversely, the spin density wave was killed



off. Thisisbest illustrated by the susceptibility of the charge density wave and spin den-

sity wave asillustrated in figures 12 and 13.
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CONCLUSION / FUTURE WORK

Thereisyet much more work to be done to study the Hubbard-Holstein model
and the Hubbard model with staggered potential. Although ample testing has been com-
pleted to the WLQMC programs this summer, the actual phase diagrams of U, V, and
A and of U, V, and A have yet to be rendered. This is not exactly detrimental, but is sim-
ply a sign of interesting work yet to come. Further, preliminary results have shown them-
selves to be very encouraging for both our model and our method. From the work that
has been completed this summer, we can conclude that the CDW phase is encouraged as
A and A areincreased while the SDW is repressed. Future work that isvital to the fulfill-

ment Of the phase diagram will include utilizing larger |attices both for more realistic

simulations and to employ the finite size scaling method; executing runs with larger 3 for



temperatures lower than room temperature; and having larger measurement period so as

to reduce the amount of error in the data.



